• Title/Summary/Keyword: $NO_x$ gas

Search Result 560, Processing Time 0.031 seconds

The Study of Optimized Combustion Tuning Method for Fossil Power Plant (발전용 보일러의 최적연소조정기법에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.45-52
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for $NO_x$ controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2,\;NO_x$ and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective rear pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing $NO_x$ emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

A Study on Effect of Environmental Characteristics by Intake Mixture Temperature in Scrubber EGR System Diesel Engines

  • Bae, Myung-Whan;Ryu, Chang-Sung
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.100-111
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle, four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $NO_x$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to survey the effect of intake mixture temperature on performance and exhaust emissions, the intake mixtures of fresh air and recirculated exhaust gas are heated by a heating device with five heating coils made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that $NO_x$ emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature. Thus one can conclude that the performance and exhaust emissions are considerably influenced by the cooled EGR.

  • PDF

Comparison of Lean Combustion Performance in a Spark-Ignition Engine Fueled with Natural Gas and Hydrogen (스파크점화 엔진에서 천연가스와 수소의 희박연소 성능 비교)

  • Park, Hyunwook;Lee, Junsun;Oh, Seungmook;Kim, Changup;Lee, Yonggyu;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.204-211
    • /
    • 2021
  • Lean combustion performance of natural gas and hydrogen was compared in a spark-ignition engine. The lean combustion engine operation with natural gas was limited due to combustion instability at an excess air ratio (EAR) above 1.8. The total hydrocarbon (THC) emissions increased significantly with increasing EAR. The nitrogen oxides (NOX) emissions were also high due to the limitation of increasing EAR. The lean combustion engine operation with hydrogen showed superior combustion stability as well as low THC and NOX emissions, even at high EARs. However, boosting technology was required to reach the high EARs.

THE EFFECTS OF EGR AND SPLIT FUEL INJECTION ON DIESEL ENGINE EMISSION

  • Gao, Z.;Schreiber, W.
    • International Journal of Automotive Technology
    • /
    • v.2 no.4
    • /
    • pp.123-133
    • /
    • 2001
  • An important goal in diesel engine research is the development of a means to reduce the emission of oxides of nitrogen ($NO_x$) and soot particulate. A phenomenological model based on the multizone concept is used in the current paper to analyze and compare the effects of exhaust gas recirculation (EGR) and split fuel injection on emission from a compression-ignited, direct-injection engine. The present results show that $NO_x$ can be reduced with a minimum penalty of soot particle emission with cooled EGR. Compared with EGR, split fuel injection has a higher soot penalty at a given level of $NO_x$ reduction.

  • PDF

A Study of Optimal Mixture Fraction of Soil Bio-Filter for Removing NOX (질소산화물 제거를 위한 최적 토양 바이오 필터 혼합비 도출에 관한 연구)

  • Cho, Ki-Chul;Lee, Nae-Hyun
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1247-1255
    • /
    • 2007
  • Soil biofiltration is an environmentally-sound technology for elimination of VOCs, odorous and $NO_X$ compounds from a low concentration, high volume waste gas streams because of its simplicity and cost-effectiveness. This study investigated the optimal mixture fraction of briquet ash, compost, soil and loess for $NO_X$ degradation. Extreme vertices design was used to examine the role of four components on $NO_X$ degradation. Under our experimental conditions, 74.5% of $NO_X$ degradation was observed, using a model mixture(25% briquet ash, 10% compost, 30% soil and 40% loess) containing 100 ppb of NO. It was shown that experimental design analysis could allow selecting optimal conditions in such biodegradation processes in this study.

A Study of $NO_x$ Reduction in Stage Combustion (단계적 연소의 $NO_x$ 저감에 대한 연구)

  • 채재우;전영남;이운영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1556-1571
    • /
    • 1993
  • Nitrogen oxides ($NO_x$) are air pollutants which are generated from the combustion of fossil fuels. Stage combustion is an effective method to reduce $NO_x$ emissions. The effects of $NO_x$ reduction by stage combustion in a pilot scale combustor(6.6kW) have been investigated using propane gas flames laden with NH$_{3}$ as Fuel-N. The results in this study are follows; (1) $NO_x$ emissions are dependent on the reducing environment of fuel-rich zone regardless of total air ratio. The maximum $NO_x$ reduction is at the stoichiometric ratio of 0.8 to 0.9 in the reducing zone. (2) $NO_x$ reduction is maximum when burnout air is injected at the point where the oxygen in reducing zone is almost consumed. (3) $NO_x$ reduction is dependent upon the temperature of reducing zone with best effect above 950.deg. C in the reducing zone. (4) The fuel stage combustion is more effective to reduce $NO_x$ formation in the wide range of stoichiometric ratio than two stage combustion. (5) The results of this study could be utilized mainly in a design strategy for low $NO_x$ emission from the combustion of high fuel-nitrogen in energy sources ratio than as an indication of the absolute levels of $NO_x$ which can be achieved by stage combustion techniques in large scale facilities.

A Study on The Pulsating Combustion of Premixed Gas in a Tube with a Honeycomb (다공성 물질에 의한 예혼합기의 맥동연소에 관한 연구)

  • 권영필;이동훈;현길학
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.676-684
    • /
    • 1990
  • This study is on the pulsating combustion of premixed gas in a Rijke type combustor made of a honeycomb flame holder in a tube. Modelling for the onset condition of the oscillation is made by the ratio of the acoustic power generation based on the analysis of heat transfer to the power loss due to the thermoviscous dissipation and radiation. Experiment is performed for the characteristics of acoustic, thermal and combustion. It is shown that the theoretical modelling for the oscillation may be used as a limit condition. And the combustion analysis for the acoustic power generation is needed for better prediction of the onset condition. Experimental result shows that, by pulsation, the flame length is shortened and the flame temperature is decreased with increase in the heat transfer coefficient. The NO$_{x}$ concentration in the exhaust gas is significantly reduced by pulsation and the concentration of unburned hydrocarbon shows a little increase.e.

An Experimental Study of the Characteristics with High Temperature Air Combustion in Jet Diffusion Flames (제트확산염의 고온공기연소특성에 관한 실험적 연구)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.89-94
    • /
    • 2003
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of exhaust gases ($N_2$, $CO_2$), such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions form the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and $NO_X$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though $NO_X$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low $NO_X$ emission because it is operated in low oxygen concentration condition in excess of dilution.

  • PDF