• Title/Summary/Keyword: $NO_x$ 흡장률

Search Result 3, Processing Time 0.016 seconds

Experimental Verification of Adsorption Rate Feedback Control Strategy for Automotive Urea-SCR DeNOX System (실차 실험을 통한 승용 디젤엔진의 Urea-SCR을 위한 암모니아 흡장률 피드백 제어 분사전략 검증)

  • Shin, Byeonguk;Park, Jooyoung;Lee, Seang Wock;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.397-407
    • /
    • 2017
  • In this study, a SCR system is employed to selectively reduce $NO_X$, which is a major cause of environmental pollution and issues in diesel engines. In particular, this paper focuses on the combination of feedforward injection strategies, depending on the NO/$NO_X$ ratio, and feedback injection control, using $NH_3$ coverage ratio, based on a SCR model. A 2.2 L passenger diesel engine, which is equipped with a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF), was used in the experiments. The developed control algorithm is implemented on a real-time computer with injection control algorithm. By analyzing the $NO_X$ emission measurement, the performance of the proposed injection control algorithm is verified.

Determination of an LNT Regeneration Condition Based on a NOx Storage Fraction in a 2.2L Direct Injection Diesel Engine (2.2L 디젤 엔진에서 NOx 흡장률 기반 LNT 재생 조건 결정)

  • Chun, Bongsu;Lee, Jungwoo;Han, Manbae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.345-351
    • /
    • 2016
  • This study was carried out to determine an optimal lean $NO_x$ trap (LNT) regeneration condition based on a $NO_x$ storage fraction. The LNT regeneration was performed by an in-cylinder post fuel injection method. A $NO_x$ storage fraction is defined by the ratio of current cumulated $NO_x$ amount in the LNT to the $NO_x$ storage capacity: 0 means empty and 1 fully loaded. In this study five engine operating conditions were chosen to represent the New European Driving Cycle. With various $NO_x$ storage fractions each engine operating condition, the LNT regeneration was executed and then $NO_x$ conversion efficiency, additional fuel consumption, CO and THC slip, peak catalyst temperature were measured. The results showed that there exist an optimal condition to regenerate the LNT, eg. 1500 rpm 6 bar BMEP with below 0.7 $NO_x$ storage fraction in this experimental constraint.

Control Oriented Storage and Reduction Modeling of the Lean NOx Trap Catalyst (제어를 위한 Lean NOx Trap의 흡장 및 환원 모델링)

  • Lee, Byoungsoo;Han, Manbae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • A control oriented model of the Lean $NO_x$ trap (LNT) was developed to determine the timing of $NO_x$ regeneration. The LNT model consists of $NO_x$ storage and reduction model. Once $NO_x$ is stored ($NO_x$ storage model), at the right timing $NO_x$ should be released and then reduced ($NO_x$ reduction model) with reductants on the catalyst active sites, called regeneration. The $NO_x$ storage model simulates the degree of stored $NO_x$ in the LNT. It is structured by an instantaneous $NO_x$ storage efficiency and the $NO_x$ storage capacity model. The $NO_x$ storge capacity model was modeled to have a Gaussian distribution with a function of exhaust gas temperature. $NO_x$ release and reduction reactions for the $NO_x$ reduction model were modeled as Arrhenius equations. The parameter identification was optimally performed by the data of the bench flow reactor test results at space velocity 50,000/hr, 80,000/hr, and temperature of $250-500^{\circ}C$. The LNT model state, storage fraction indicates the degree of stored $NO_x$ in the LNT and thus, the timing of the regeneration can be determined based on it. For practical purpose, this model will be verified more completely by engine test data which simulate the NEDC transient mode.