• Title/Summary/Keyword: $NO_x$/CO

Search Result 733, Processing Time 0.026 seconds

Fabrication of Stack-Structured Gas Sensor of LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3 and Its NOx Sensing Properties (LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3의 적층구조를 가지는 가스센서 제조와 그의 NOx 검지특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.423-428
    • /
    • 2015
  • Impedancemetric $NO_x$ (NO and $NO_2$) gas sensors were designed with a stacked-layer structure and fabricated using $LaCr_xCo_{1-x}O_3$ (x = 0, 0.2, 0.5, 0.8 and 1) as the receptor material and $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ plates as the solid-electrolyte transducer material. The $LaCr_xCo_{1-x}O_3$ layers were prepared with a polymeric precursor method that used ethylene glycol as the solvent, acetyl acetone as the chelating agent, and polyvinylpyrrolidone as the polymer additive. The effects of the Co concentration on the structural, morphological, and $NO_x$ sensing properties of the $LaCr_xCo_{1-x}O_3$ powders were investigated with powder X-ray diffraction, field emission scanning electron microscopy, and its response to 20~250 ppm of $NO_x$ at $400^{\circ}C$ (for 1 kHz and 0.5 V), respectively. When the as-prepared precursors were calcined at $700^{\circ}C$, only a single phase was detected, which corresponded to a perovskite-type structure. The XRD results showed that as the Co concentration of the $LaCr_xCo_{1-x}O_3$powders increased, the crystal structure was transformed from an orthorhombic phase to a rhombohedral phase. Moreover, the $LaCr_xCo_{1-x}O_3$ powders with $0{\leq}x<0.8$ had a rhombohedral symmetry. The size of the particles in the $LaCr_xCo_{1-x}O_3$powders increased from 0.1 to $0.5{\mu}m$ as the Co concentration increased. The sensing performance of the stack-structured $LaCr_xCo_{1-x}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensors was found to divide the impedance component between the resistance and capacitance. The response of these sensors to NO gas was more sensitive than that to $NO_2$ gas. Compared to other impedancemetric sensors, the $LaCr_{0.8}Co_{0.2}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensor exhibited good reversibility and reliable sensingresponse properties for $NO_x$ gases.

The removing characteristic of harmful exhaust from a motorcycle using non-thermal plasma (플라즈마를 이용한 이륜자동차 배출가스저감 특성)

  • Kim, Young-Ju;Park, Hong-Jae;Jung, Jang-Gun;Lee, Jae-Dong;Park, Jae-Yoon;Koh, Hee-Seog
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1127-1130
    • /
    • 2003
  • In the last several centuries, humankind have been experienced the material abundance with a development of technical civilization and being industrialized quickly. During the process of this, environmental pollutant have occurred naturally so that humankind have more interests for environment pollutant. Air pollution caused by exhaust from a car is very harmful for human. Most of exhaust from a gasoline engine are $CO_x(CO+CO_2),\;NO_x(NO+NO_2)$, and THC(Total Hydrocarbon). The method to remove these kinds of noxious gases are so many thing such as the three catalysts, $NO_x$ catalysts, Filter and so on. However, although air pollution caused by exhaust from motorcycle have also occurred very much, there is no regulation for motorcycle. In this paper, we studied to remove $CO_x(CO+CO_2),\;NO_x(NO+NO_2)$, THC exhaust from a motorcycle using non-thermal plasma In the result, $NO_x(NO+NO_2)$ concentration was decreased approximately 70% and THC(Total Hydrocarbon) was removed about 40%.

  • PDF

A Study on Emission Characteristics of Inserting CO Tube (CO튜브 삽입에 따른 오염 물질 배출특성에 관한 연구)

  • Lee, Jae-Park;Kim, Jong-Min;Lee, Seung-Ro;Lee, Chang-Eon
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.182-187
    • /
    • 2010
  • This study was the effect of inserting CO tube on $NO_x$ and CO emission characteristics in a compact combustion chamber. In detail, $NO_x$ and CO emission characteristics with changing of distance due to inserting CO tube between a burner and a main heat exchanger were investigated. For this study, the commercial program, FLUENT with GRI 2.11 detail reaction mechanism, was used for the numerical study and a commercial heat exchanger was tested for the experimental study. As results, when the CO tube was inserted between a burner and a main heat exchanger, it was verified that $NO_x$ and CO emissions was decreased simultaneously as CO tube was closed to a burner and the distance between CO tube and a main heat exchanger was increased.

Reduction of NOx by CO on the Lanthanoid Perovskite-type Catalysts for Hot Gas Cleanup (고온 배가스 처리용 Lanthanoid계 Perovskite 형 촉매상에서 CO에 의한 NOx의 환원)

  • Lee, Jea-Keun;Lee, Jae-Hee;Lim, Jun-Heok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.169-178
    • /
    • 2000
  • Perovskite oxide catalysts doped on porous alumina beads are prepared in a citric acid solution. To investigate the applicability of the catalysts to the hot gas cleanup, a series of experiments on the reduction characteristics of $NO_x$ by CO as a reducing agent are carried out in a packed bed reactor containing the catalysts. Parameters tested are the operating temperature and $CO/NO_x$ molar ratio. It is found that mixed complex oxides of $La_{0.5}Sr_{0.5}CoO_3$, $SrAl_{12}O_{19}$ and $LaAl_{11}O_{18}$ are uniformly distributed on the alumina beads. The conversion efficiency of $NO_x$ by CO sharply increases with the operating temperature up to $700^{\circ}C$ and then approaches 100% when $CO/NO_x$ molar ratio is greater than 1.0. The conversion efficiency of $NO_x$ is maintained by over 98% during a continuous operation for 23 hours at $800^{\circ}C$ and space velocity of $10700hr^{-1}$.

  • PDF

The Low $NO_{x}$ Characteristics of a Lean Premixed Gas Turbine Combustor (희박연소를 이용한 가스터빈 연소기의 저 $NO_{x}$ 특성)

  • Son, M.G.;Ahn, K.Y.;Kim, H.S.;Kim, Y.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.66-70
    • /
    • 2001
  • The combustion characteristics have been investigated to develop the low $NO_{x}$ gas turbine combustor. The lean premixed combustion technology was applied to reduce the $NO_{x}$ emission. Also, the conventional combustor was designed and tested for the baseline of low $NO_{x}$ combustor performance. The test was conducted at the condition of high temperature and ambient pressure. The combustion air which has the temperature of 500K were supplied to the combustor through the air preheater. The temperature and emissions of $NO_{x}$ and CO were measured at the exit of combustor. The premixing chamber can be operated very lean condition of equivalence ratio around 0.35. The $NO_{x}$ was decreased with decreasing the equivalence ration. The CO was decreased with decreasing the equivalence ratio, but the CO was increased with decreasing the equivalence ratio below 0.45. But, at the very lean condition of equivalence ratio below 0.35 both NOx and CO were increased because of the flame unstability. The $NO_{x}$ was decreased slightly and CO was increased with increasing inlet air flowrate. This results can be used to determine the size of combustor. The low $NO_{x}$ combustor has lower values of $NO_{x}$ and CO compared with conventional one. Consequently the performance of combustor shows the possibility of the application to the gas turbine system.

  • PDF

NOx and CO Emission Characteristics of Porous Inert Medium Burner (다공물질 연소기의 NOx 및 CO 배출 특성)

  • 임인권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.559-567
    • /
    • 1995
  • The combustion process within a porous inert medium (PIM) burner is numerical studied. A detailed chemical reaction scheme including thermal and prompt NO$_{x}$ reactions is used to predict the formation and destruction of pollutants such as NO$_{x}$ and CO. The reaction paths for NO$_{x}$ formation are divided to quantify the amount of NO$_{x}$ formed through thermal NO$_{x}$ reaction or through prompt NO$_{x}$ reaction. Emission index is calculated to compare the actual mass of NO$_{x}$ or CO produced through the combustion of unit mass of fuel. It is found NO formation in PIM burner is confined in flame zone and formation is suppressed due to heat loss at down-stream of the flame. Higher production of NO through prompt NO reaction path is observed due to the higher concentration of fuel derivative species and its higher diffusion at flame front. For all equivalence ratios, CO emission within PIM burner is lower than that from the one-dimensional freely-propagating flame. PIM burner flame has better NO$_{x}$ emission index from .psi. = 0.75 to .psi. = 1.1. to .psi. = 1.1.

A Study on the Emission Factor of NOx and CO by Burning of Synthetic Biogas (합성 Bio-Gas 연소시 발생되는 질소산화물과 일산화탄소 배출에 관한 연구)

  • An, Jae-Ho;Kim, Tae-Wan;Lee, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • In view of energy supply, biogas can be seen as alternative fuel by substituting considerable amount of fossil fuel and may be utilized for heat and power production or for transport fuel production ($CH_4-enriched$ biogas). The aim of this research is to analyse the emission of $NO_x$ and CO from biogas fired combustion engine for electric power production. The result indicate a significant effect of biogas composition ($CH_4-CO_2$ ratio) and biogas flow rate on the air pollutants emission. The emission factors from this study were compared with those of U.S. EPA. Low $CH_4-CO_2$ ratio condition typically shows the lower $NO_x$ and CO emission than higher $CH_4-CO_2$ ratio condition. At normal $CH_4-CO_2$ ratio (7:3) emission factors of $NO_x$ and CO were 1.29 and 30.43 g/MMBtu, respectively. At low $CH_4-CO_2$, ratio (6:4) emission factors of $NO_x$ and CO were 0.646 and 60.86 g/MMBtu, respectively, It should be emphasized that the actual emission may vary considerably from these results due to operating conditions including torque load and engine speed.

Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According to the Subsidy Program of Korea Forest Service (산림청 지원사업에 따라 보급된 산업용 목재펠릿보일러에서 목재펠릿 연소 시 배출되는 일산화탄소와 질소산화물의 배출 특성 및 배출계수 분석)

  • Kang, Sea Byul;Choi, Kyu Sung;Lee, Hyun Hee;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.597-609
    • /
    • 2018
  • Korea Forest Service has supplied 76 industrial wood pellet boilers from 2011 to 2015 through subsidy programs. Since carbon monoxide (CO) and nitrogen oxides ($NO_x$) generated during boiler combustion are substances that lead to death in the case of acute poisoning, it is very important to reduce emissions. Therefore, the CO and $NO_x$ emission values of 63 boilers excluding the hot air blower and some boilers initially supplied were analyzed. The emission factor was also calculated from the measured exhaust gas concentration (based on exhaust gas $O_2$ concentration of 12%). The average value of CO emitted from industrial wood pellet boilers was 49 ppm and it was confirmed that the CO concentration was decreasing as the years passed. The emission factor of CO was 0.73 g/kg. The average value of $NO_x$ emitted from industrial wood pellet boilers was 67 ppm and the emission factor of $NO_x$ was 1.63 g/kg. Unlike CO, there was no tendency to decrease according to the installation year. Both CO and $NO_x$ measurements met the limits of the Ministry of Environment. These $NO_x$ emission factors were compared with the $NO_x$ emission factors produced by certified low $NO_x$ burners. The $NO_x$ emission factor of industrial wood pellet boilers was about 1.9 times that of certified low $NO_x$ LNG combustors and about 0.92 times that of coal combustion.

Effect of Fe Addition on Hydrogen Rich NSR Kinetics over Pt/Co/Ba/Al2O3 Catalyst (Pt/Co/Ba/Al2O3에 Fe 첨가가 수소 풍부 NSR 반응성에 미치는 영향)

  • Kim, Jingul;Jeon, Jiyong;Kim, Seongsoo
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.6
    • /
    • pp.581-587
    • /
    • 2012
  • Thermal aging effect on NSR kinetics was studied over Pt/Co/Fe/Ba/$Al_2O_3$ catalyst. The amount of $NO_x$ uptake over Pt/Co/Fe/Ba/$Al_2O_3$ calcined at $400^{\circ}C$ increased with increasing NSR temperature from $200^{\circ}C$ to $400^{\circ}C$, where amount of $NO_x$ uptake is the highest at $400^{\circ}C$ with mol ratio of $NO_x$/Ba = 0.5. Thereafter, the amount of $NO_x$ uptake at $400^{\circ}C$ decreased with the higher calcination temperature, where Pt/Co/Fe/Ba/$Al_2O_3$ catalyst calcined at $700^{\circ}C$ showed an amount of $NO_x$ uptake with the mol ratio of $NO_x$/Ba=0.062. Result of XRD and NSR showed that Fe addition into Pt/Co/Fe/Ba/$Al_2O_3$ suppressed sintering of Pt crystallites and make $NO_x$ uptake larger, compared to no addition of Fe into Pt/Co/Fe/Ba/$Al_2O_3$ catalyst. From BET result, it was found that the change of specific surface area was relatively small by the thermal aging process. Therefore, it was found that the sintering of Pt crystallites caused the decrease of $NO_x$ uptake during NSR reaction and Fe played a role to suppress the sintering process of Pt crystallites caused by thermal aging.

Study of the Optimal Calcination Temperature of an Al/Co/Ni Mixed Metal Oxide as a DeNOx Catalyst for LNT

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Suh, Jeong Kwon;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • Most of LNT catalysts use noble metals such as Pt for low temperature NOx oxidation but there is an economic weakness. For the purpose of overcoming this, this study is to develop DeNOx catalyst for LNT excluding PGM (platinum group metal) such as Pt, Pd, Rh, etc. To do so, Al/Co/Ni catalyst selected as a preliminary test is used to study fundamental property and NOx’s conversion according to calcined temperature. Ultimately, that is, Al/Co/Ni mixed metal oxide which does not use PGM is selected and physicochemical characterization is performed by way of XRD, EDS, SEM, BET and ramp test and NOx conversion is also analyzed. This study shows that all samples consist of mixed oxides of spinel structure of Co2AlO4 and NiAl2O4 and have enough pore volume and size for redox. But as a result of NH3-TPD test, it is desired that calcined temperature needs to be maintained at 700 ℃ or lower. Also only samples which are processed under 500 ℃ satisfied NO and NOx conversion simultaneously through ramp test. Based on this study’s results, optimum calcined temperature for Al/Co/Ni=1.0/2.5/0.3 mixed metal oxide catalyst is 500 ℃.