• 제목/요약/키워드: $NO_2$ Sensor

검색결과 604건 처리시간 0.026초

고관절 재활로봇의 2축 힘/토크센서 설계 (Design of Two-axis Force/Torque Sensor for Hip Joint Rehabilitation Robot)

  • 김한솔;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제22권7호
    • /
    • pp.524-529
    • /
    • 2016
  • We describe the design and fabrication of a two-axis force/torque sensor with parallel-plate beams (PPBs) and single beams for measuring force and torque in hip-joint rehabilitation exercise using a lower rehabilitation robot. The two-axis force/torque sensor is composed of an Fz force sensor and a Tz torque sensor, which detect z direction force and z direction torque, respectively. The two-axis force/torque sensor was designed using the FEM (Finite Element Method) and manufactured using strain gages. The characteristics experiment of the two-axis force/torque sensor was carried out. The test results show that the interference error of the two-axis force/torque sensor was less than 0.64% and the repeatability error and the non-linearity of the two-axis force/torque sensor were less than 0.03%. It is thought that the developed two-axis force/torque sensor could be used for a lower rehabilitation robot.

Failure Detection Filter for the Sensor and Actuator Failure in the Auto-Pilot System

  • Suh, Sang-Hyun
    • Journal of Hydrospace Technology
    • /
    • 제1권1호
    • /
    • pp.75-88
    • /
    • 1995
  • Auto-Pilot System uses heading angle information via the position sensor and the rudder device to control the ship's direction. Most of the control logics are composed of the state estimation and control algorithms assuming that the measurement device and the actuator have no fault except the measurement noise. But such asumptions could bring the danger in real situation. For example, if the heading angle measuring device is out of order the control action based on those false position information could bring serious safety problem. In this study, the control system including improved method for processing the position information is applied to the Auto-Pilot System. To show the difference between general state estimator and F.D.F., BJDFs for the sensor and the actuator failure detection are designed and the performance are tested. And it is shown that bias error in sensor could be detected by state-augmented estimator. So the residual confined in the 2-dimension in the presence of the sensor failure could be unidirectional in output space and bias sensor error is much easier to be detected.

  • PDF

전극평형전위차 가스 센싱 메커니즘을 적용한 일산화탄소 소형 전위차센서의 특성 향상에 관한 연구 (A Scientific Approach for Improving Sensitivity and Selectivity of Miniature, Solid-state, Potentiometric Carbon Monoxide Gas Sensors by Differential Electrode Equilibria Mechanism)

  • 박준영;김지현;박가영
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.92-96
    • /
    • 2010
  • Based on the differential electrode equilibria approach, potentiometric YSZ sensors with semiconducting oxide electrodes for CO detection are developed. To improve the selectivity, sensitivity and response-time of the sensor, our strategy includes (a) selection of an oxide with a semiconducting response to CO, (b) addition of other semiconducting materials, (c) addition of a catalyst (Pd), (d) utilization of combined p- and n-type electrodes in one sensor configuration, and (e) optimization of operating temperatures. Excellent sensing performance is obtained by a novel device structure incorporating $La_2CuO_4$ electrodes on one side and $TiO_2$-based electrodes on opposite substrate faces with Pt contacts. The resulting response produces additive effects for the individual $La_2CuO_4$ and $TiO_2$-based electrodes voltages, thereby realizing an even higher CO sensitivity. The device also is highly selective to CO versus NO with minor sensitivity for NO concentration, compared to a notably large CO sensitivity.

SnO2를 이용한 CO 및 NOx 가스 감지 센서 제작 및 특성 연구 (Fabrication and Evaluation of the SnO2 Based Gas Sensor for CO and NOx Detection)

  • 김만재;이유진;안효진;이상훈
    • 한국자동차공학회논문집
    • /
    • 제23권5호
    • /
    • pp.515-523
    • /
    • 2015
  • In this paper, we fabricated and evaluated the gas sensor for the detection of CO gas and $NO_X$ gas among the vehicle exhaust emission gasses. The $SnO_2$ (tin dioxide) layer is used as the detection material, and the thin-film type and the nano-fiber type layers are deposited with various thicknesses using sputtering method and electro spinning method, respectively. The experiments are performed in the chamber where the gas concentration is controlled with mass flow controller. The fabricated devices are applied to the CO and $NO_X$ gas, where the device with the thinner $SnO_2$ layer shows better sensitivity. The nano-fiber has the larger surface area, and the shorter response time and recovery time are obtained. From the experimental results, both types of gas sensors successfully detect CO and $NO_X$ gases, which can be applied to measure those gases from the vehicle emissions.

미립분사가공을 이용한 유리 소재의 가속도 센서 구조물 성형 (Fabrication of the Acceleration Sensor Body of Glass by Powder Blasting)

  • 박동삼;강대규;김정근
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.146-153
    • /
    • 2006
  • Acceleration sensors have widely been used in the various fields of industry. In recent years, micromachining accelerometers have been developed and commercialized by the micromachining technique or MEMS technique. Typical structure of such sensors consist of a cantilever beam and a vibrating mass fabricated on Si wafers using etching. This study investigates the feasibility of powder blasting technique for microfabrication of sensor structures made of the pyrex glass alternating the existing Si based acceleration sensor. First, as preliminary experiment, effect of blasting pressure, mass flow rate of abrasive and no. of nozzle scanning on erosion depth of pyrex and soda lime glass is studied. Then the optimal blasting conditions are chosen for pyrex sensor. Structure dimensions of designed glass sensor are 2.9mm and 0.7mm for the cantilever beam length and width and 1.7mm for the side of square mass. Mask material is from aluminium sheet of 0.5mm in thickness. Machining results showed that tolerance errors of basic dimensions of glass sensor ranged from 3um in minimum to 20um in maximum. This results imply the powder blasting can be applied for micromachining of glass acceleration sensors alternating the exiting Si based sensors.

증착방법에 따른 $NO_x$가스 감지용 $WO_3$박막센서의 특성 변화 연구 (The Sensing Characteristics of $WO_3$ Thin Films for $NO_x$ Gas Detection with the Change of Deposition Methods)

  • 김태송;김용범;유광수;성기숙;정형진
    • 한국세라믹학회지
    • /
    • 제34권4호
    • /
    • pp.387-393
    • /
    • 1997
  • In order to apply WO3 thin films to the semiconducting NOx gas sensors as a sensing material, which have been expected to show good electrical properties, such as large sensitivity, rapid responsibility, and high selectivity, the fabrication method and their sensing characteristics were studied. The variations of surface morphologies, crystallographic orientations and crystallinity with the WO3 thin film growing methods thermal evaporation and DC sputtering methods were investigated by using scanning electron microscopy (SEM) and X-ray diffraction(XRD) analysis. As a result of sensitivity (Rgas/Rair) measurements for the 5 ppm NO2 test gas, the sensitivity values were 113 for the sputtered films and 93 for the evaporated films. It was also observed that the recovery rate of a sensing signal after measuring sensitivity was faster in the sputtered films than in the evaporated films.

  • PDF

무선 센서 네트워크 환경에서 공정성 향상을 위한 새로운 패킷 전송 구조 (A New Packet Forwarding Architecture For Fairness Improvement in Wireless Sensor Network)

  • 송병훈;이형수;함경선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.215-217
    • /
    • 2004
  • In wireless sensor networks, fair allocation of bandwidth among different nodes is one of the critical problems that effects the serviceability of the entire system. Fair bandwidth allocation mechanisms, like fair queuing, usually need to maintain state, manage buffers, and perform packet scheduling on a per flow basis, and this complexity may prevent them from being cost-effectively implemented and widely deployed. It is a very important and difficult technical issue to provide packet scheduling architecture for fairness in wireless sensor networks. In this paper, we propose an packet scheduling architecture for sensor node, called FISN (Fairness Improvement Sensor Network), that significantly reduces this implementation complexity yet still achieves approximately fair bandwidth allocations. Sensor node for sensing estimate the incoming rate of each sensor device and insert a label into each transmission packet header based on this estimate. Sensor node for forwarding maintain no per flow state; they use FIFO packet scheduling augmented by a probabilistic dropping algorithm that uses the packet labels and an estimate of the aggregate traffic at the gathering node. We present the detailed design, implementation, and evaluation of FISN using simulation. We discuss the fairness improvement and practical engineering challenges of implementing FISN in an experimental sensor network test bed based on ns-2.

  • PDF

과산화수소 용액에 담지 된 활성탄소섬유의 전자선 조사에 따른 일산화질소 가스 감응 (NO Gas Sensing of ACFs Treated by E-beam Irradiation in H2O2 Solution)

  • 이상민;박미선;정민정;이영석
    • 한국수소및신에너지학회논문집
    • /
    • 제27권3호
    • /
    • pp.298-305
    • /
    • 2016
  • In this study, we treated pitch-based activated carbon fibers (ACFs) in hydrogen peroxide using electron beam (E-beam) irradiation to improve nitrogen monoxide (NO) sensing ability as an electrode material of gas sensor. The specific surface area of ACFs treated by E-beam irradiation with 400 kGy increased from $885m^2/g$ (pristine) to $1160m^2/g$ without any changes in structural property and functional group. The increase in specific surface area of the E-beam irradiated ACFs enhanced NO gas sensing properties such as response time and sensitivity. When the ACFs irradiated with 400 kGy, response time was remarkably reduced from 360 s to 210 s and sensitivity was increased by 4.5%, compared to the pristine ACFs. These results demonstrate convincingly that surface modification of ACFs using E-beam in hydrogen peroxide solution can enhance textural properties of ACFs and NO gas sensing ability of gas sensor at room temperature.

Low-Temperature Operating $SnO_2$ Nanowire $NO_2$ Sensor

  • Jung, Tae-Hwan;Kwon, Soon-Il;Kim, Yeon-Woo;Park, Jae-Hwan;Lim, Dong-Gun
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.485-486
    • /
    • 2008
  • The network structure of $SnO_2$ nanowires was fabricated on the electrodes by a simple thermal evaporation process from Sn metal powders and oxygen gas. The diameter of the nanowires was $20\;{\sim}\;60\;nm$ depending on the processing conditions. The operating temperature of the sensor could be decreased down below $50^{\circ}C$ by controlling the properties of the nanowires and the structures of the electrodes. The sensitivities were $10\;{\sim}\;15$ when the $NO_2$ concentrations were $10\;{\sim}\;50\;ppm$ at the operating temperature of $50^{\circ}C$.

  • PDF