• Title/Summary/Keyword: $NH_4NO_3$

Search Result 1,747, Processing Time 0.035 seconds

Suitable hormone-free medium for in vitro mass propagation via bioreactor culture of ever-bearing strawberry (Bioreactor를 이용한 사계성 딸기 조직배양묘 대량증식을 위한 적정 무호르몬 배지)

  • Kim, Hye-Jin;Lee, Jong-Nam;Kim, Ki-Deog;Im, Ju-Sung;Lim, Hak-Tae;Yeoung, Young-Rok
    • Journal of Plant Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.221-227
    • /
    • 2011
  • This study was carried out to determine optimal medium conditions for mass propagation by bioreactor culture of ever-bearing strawberry (Fragaria ${\times}$ ananassa D.). Two different type of nitride were that mixed $NH_4NO_3$ and $KNO_3$ or added $KNO_3$ only. And nitride concentrations were at the 4 levels of $1/2{\times}$, $1{\times}$, $2{\times}$ and $3{\times}$ that was included $NH_4NO_3$ and $KNO_3$. Sucrose content ranged at 3 levels of $10g{\cdot}L^{-1}$, $20g{\cdot}L^{-1}$ and $30g{\cdot}L^{-1}$ and medium pH were at the 3 levels of 4.6, 5.6 and 6.6. In bioreactor culture, medium that are included $NH_4NO_3$ and $KNO_3$ together in MS medium was suitable for mass propagation. Medium EC rose rapidly when the nitride concentration was increased. For that reason, plantlet growth was inhibited. Shoots of nitride $1/2{\times}$ concentration was 10.8 ea and $1/2{\times}$ concentration was suitable for shoot propagation. Fresh weight of sucrose $30g{\cdot}L^{-1}$ was 3,101 mg which was heaviest and aerial and ground part were higher than the other concentration. Shoots were increased in proportion to the increasing concentration of sucrose. In the pH condition, from pH 5.6 to 6.8 were appropriate for the optimum growth of aerial and ground part of plant. From the results, in bioreactor culture for mass propagation, MS medium was suitable $1/2{\times}$ concentration that was included $NH_4NO_3$ and $KNO_3$ together, and added $30g{\cdot}L^{-1}$ of sucrose, and then adjusted pH between 5.6 and 6.6.

Growth and Nutrient Uptake of 'Seolhyang' Strawberry (Fragaria × ananassa Duch) Responded to Elevated Nitrogen Concentrations in Nutrient Solution (질소 시비농도가 '설향' 딸기(Fragaria × ananassa Duch)의 생장과 무기원소 흡수에 미치는 영향)

  • Choi, Jong-Myung;Latigui, Ahmed;Yoon, Moo-Kyung
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.777-782
    • /
    • 2010
  • This research tested five modified Hoagland solutions for proper fertility management of nitrogen in 'Seolhyang' strawberry cultivations. The changes of nutrient solutions were in total nitrogen concentrations ($meq{\cdot}L^{-1}$) such as 0 (${NO^-}_3$), 2.5 (${NO_3}^-$), 5 (${NO_3}^-$), 10 ($7.5{NO_3}^-$ + $2.5{NH_4}^+$) and 15 ($10{NO_3}^-$ + $5{NH_4}^+$). The fresh weight and $NO_3$-N concentrations in petiole sap responded to the elevated nitrogen concentrations in fertilizer solution in quadratic (y=7.10+2.668x-$0.115x^2$, $R^2=0.7983^{***}$) and linear (y=26.14+5.245x, $R^2=0.6083^{***}$), respectively. The dry weight and N content of the above ground plant tissue responded to the elevated nitrogen in quadratic (y=2.140+0.492x-$0.022x^2$, $R^2=0.6110^{***}$) and linear (y=0.569+0.033x, $R^2=0.6952^{***}$), respectively. In our experiment the solution with $5meq{\cdot}L^{-1}$ of ${NO_3}^-$ showed positive results in both dry and fresh weight productions. However, a future research about modification of this solution and growth and nutrient uptake response is necessary to achieve better growth of 'Seolhyang' strawberry.

Comparison of Water, Nitrogen Uptake and Use Efficiency Treated with Silica and N Application Forms (규산과 질소형태별 처리에 따른 벼의 수분 및 질소흡수와 이용효율 비교)

  • Choi, Kyung-Jin;Lee, Jung-Il;Chung, Nam-Jin;Yang, Won-Ha;Lee, Chung-Keun;Oh, Se-Kwan;Kim, Je-Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • This experiment was carried out to elucidate the effects of silicate and different application forms of N on the uptake of water and N by rice plants. Three rice cultivars, Ilpum, Anda and M202, were grown under the hydroponics in a phytotron. One-hundred ppm silica was applied for silicate treatment. For nitrogen application forms were 100% $NH_4$ and $NH_4+NO_3$ in 2:1 ratio were applied. Silica treatment, compared to silica free, was very effective on the nitrogen uptake and dry weight increase of rice plants. Although silica application demonstrated no significant effect on the amount of water uptake, it improved increased water and nitrogen use efficiency. Therefore, sufficient application of silicate in paddy field will be useful for the growth of rice plants and water saving.

Change of Nutrients and Behaviour of Total Coliforms in the Natural Treatment of Wastewater by Subsurface Flow Wetland System (인공습지를 이용한 자연정화 오수처리시설에서 영양물질의 변화와 대장균군의 행동)

  • Yoon, Chun-Gyeong;Kwun, Soon-Kuk;Kim, Hyung-Joong
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.3
    • /
    • pp.249-254
    • /
    • 1997
  • The constructed wetland system which is applicable to rural wastewater treatment was examined by pilot plant experiment. Removal rates of nutrients including nitrogen and phosphorus and total coliform were evaluated. The $NH_4\;^+$ concentration of the influent was in the range of 91.57 to 275.88mg/l and the effluent concentration was about 40% lower than the influent. The decreasing of the $NH_4\;^+$ concentration might be due to volatilization, plant uptake, adsorption onto soil particles, and mainly nitrification. However, generally concentrations of $NO_2\;^-$ and $NO_3\;^-$ were increased in the effluents compared to the influent concentrations, which implies that nitrogen components in the system were nitrified. Overall, the average removal rate of the nitrogen was about 5% which seems inadequate as a wastewater treatment system, and this system needs improvement on nitrogen removal mechamism. The removal rate of the phosphorus was quite high and effluent concentration was very low. Reason for high removal rate of the phosphorus might be mainly strong adsorption characteristic onto soil particles. The average removal rate of the total coliforms was about 83%, and main removal mechanisms are thought to be adsorption onto soil and inability to compete against the established soil microflora. From the results of the study, the constructed wetland system needs to be improved in nitrogen removal mechanism for field application.

  • PDF

Selective Catalytic Reduction of NOx with Ammonia over Cu and Fe Promoted Zeolite Catalysts (구리 제올라이트와 철 제올라이트 촉매에 의한 질소산화물의 암모니아 선택적 촉매환원반응 특성)

  • Ha, Ho-Jung;Hong, Ju-Hwan;Choi, Joon-Hwan;Han, Jong-Dae
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.287-294
    • /
    • 2013
  • The $NH_3$-selective catalytic reduction (SCR) reaction of NO with excess of oxygen were systematically investigated over Cu-zeolite and Fe-zeolite catalysts. Cu-zeolite and Fe-zeolite catatysts to adapt the SCR technology for mobile diesel engines were prepared by liquid ion exchange and incipient wetness impregnation of $NH_4$-BEA and $NH_4$-ZSM-5 zeolites. The catalysts were characterized by BET, XRD, FE-TEM (field emission transmission electron microscopy) and SEM/EDS. The SCR examinations performed under stationary conditions showed that the Cu-exchanged BEA catalyst revealed pronounced performance at low temperatures of $200{\sim}250^{\circ}C$. With respect to the Fe-zeolite catalyst, the Cu-zeolite catalyst showed a higher activity in the SCR reaction at low temperatures below $250^{\circ}C$. BEA zeolite based catalyst exhibited good activity in comparison with ZSM-5 zeolite based catalyst at low temperatures below $250^{\circ}C$.

Air Pollutants Levels and Physiological Variation of Ginkgo biloba in Chuncheon (춘천지역의 대기오염도와 은행나무의 생리적 변화에 관한 연구)

  • Lee Sang-Deok;Joo Yeong-Teuk;Han Jin-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.141-147
    • /
    • 2005
  • This study investigated air pollutant levels and physiological variation of Ginkgo biloba in Chuncheon. The results were as follows: The annual average concentrations of $SO_2,\;NO_2\;and\;PM10$ were 0.004ppm, 0.013 ppm and $66{\mu}g/m^3$, respectively. The volume weighted average concentrations of ionic components were $SO_4\;^{2-}\;3.584 mg/m^3,\;NO_3^-\; 2.803 mg/m^3,\;Cl^-\;1.485 mg/m^3\;and\;NH_4\;^+\;0.998 mgg/m^3$ in precipitation. The annual wet deposition amount of the major ions was shown to be $SO_4^{2-}\;3.865g/m^2/yr,\;NO_3^-\;2.924g/m^2/yr,\;Cl^-\;2.773g/m^2/yr\;and\; NH_4\;^+\;1.485 g/m^2/yr$ during this study period. The seasonal averaged pH in leaves were spring pH 5.9 0.5, summer pH 5.5 0.4 and fall pH 5.1 0.3. The seasonal average water soluble sulfur content in leaves were spring 0.012 0.004%, summer $0.012\;0.002\%\;and\;fall\;0.020\;0.007\%$. The seasonal average water soluble sulfur content in bark were spring $0.0071\;0.0003\%,\;summer\; 0.0066\;0.0004\%,\;fall\;0.0063\;0.0004\%\;and\;winter\;0.0071\;0.0003\%$.

Origin and Spatial Distribution of Organic Matter at Gwangyang Bay in the Fall (추계 광양만의 유기물 기원과 분포 특성)

  • Lee, Young-Sik;Kang, Chang-Keun;Choi, Yong-Kyu;Lee, Sang-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Environment factors related to the distribution of organic matter in surface seawater and sediments were investigated to estimate main pollution sources and range of their influence in Gwangyang Bay. The main pollution sources for the factors that affect organic matter distribution could be divided into three main sources: fresh water runoffs from Seomjin and Dong River, Gwangyang-si domestic sewage, and Yosu Industrial Complex. Considering the characteristics in horizontal distributions of the environmental factors in water column, sediment, and water current regime, the influencing range of these main sources was likely to be divided into three areas within the bay as follows: Area I receiving lots of fresh water from Seomjin River, Area II receiving lots of domestic sewage from Gwangyang-si and fresh water of Dong River, Area III receiving lots of materials from Yosu Industrial Complex. Area I seems to be characterized as low salinity, high concentration of $NO_3-N,\;and\;SiO_2-Si$, Area II as low salinity, high concentration of $NO_3-N,\;NH_4-N,\;and\;SiO_2-Si$, and Area III as high water temperature, high concentration of $NH_4-N,\;and\;PO_4-P$ in water column, high concentration of $NH_4-N,\;PO_4-P,\;and\;SiO_2-Si$ in surface sediments.

Relationship between chemical and microbial characteristics of root zone and root growth of gineng (개체별인삼근권(個體別人蔘根圈)의 화학(化學) 및 미생물특성(微生物特性)과 근생육(根生育)과의 관계(關係))

  • Park, Hoon;Lee, Myong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.2
    • /
    • pp.131-137
    • /
    • 1989
  • Chemical and microbial characteristics of root zone of neighboring large and small ginseng in a high yield field were investigated in relation to root growth. $NO_3-N$, $NH_4-N$, and available P contents were significantly low for large root but Ca high. The contents of $NO_3-N$ or $NH_4-N$ showed significant negative correlation with fine root development. Precipitation quotient of humic acid tended to be high for large roots. The population of one dominant bacteria was significantly high for large root. The ratios of bacteria to fungi or actinomycetes were positively correlated with fine root development.

  • PDF

Application of Exchange Equations for NH4-K NH4-Ca Equilibria (NH4-K 와 NH4-Ca 평형에 대한 양이온 치환식의 적용)

  • Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 1995
  • Ion exchange equilibria in bulk and rhizosphere soil collected from peach seedlings were studied to find exchange equations that could be used in chromatographic models dealing with movement and distribution of fertilizer ammonium and exchangeable cations in soil profiles. Soil samples were equilibrated with mixtures of $NH_4Cl$, KCI, and $CaCl_2$ solutions and then extracted with $Sr(NO_3)_2$ solution to determine exchangeable cation compositions at equilibrium. Exchange data were fitted to Vanselow's, Gapon's, and Kerr's equations, but those formulations did not adequately describe the equilibria. An empirical equation of the form : ${\frac{\alpha_i^m}{a_j^n}}=K{\frac{(iX)^{mPi}}{(jX)^{nPj}}}$ which has an exponent on each of the exchangeable cation concentrations could describe the equilibria very well over the range of treatments. In this equation ${\alpha}^i$ and ${\alpha}^j$ are activities of cation i and j with valences m and n respectively. (iX) and (jX) are concentrations of exchangeable cations. Mole or equivalent fractions can be considered as the exchangeable ion concentration unit. Arbitrary constants $P_i$ and $P_j$, and distribution coefficient K can be found with multiple regression for the logarithmic form of the equation.

  • PDF

Effect of Nutrient Solution Composition Modification on the Internal Quality of Some Leaf Vegetables in Hydroponics (수경재배시 양액 조성 처리가 몇가지 엽채류의 내적 품질에 미치는 영향)

  • Kang, Ho-Min;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.348-351
    • /
    • 2007
  • This study was conducted to find out the change of infernal quality, such as vitamin C and nitrate contents in some leaf vegetables grown hydropoincally in different nutrient conditions. Pak-choi (Brassica camperistis L. spp. chinesis Jusl.), chungchima (Lactuca sativa L. var. crispa cv. Chungchima) and romaine (Lactuca sativa L. var. longifolia Lam.) lettuces were cultivated for 2 weeks in 4 different nutrient solutions, such as tap water; no-nutrient, added $NH_4$, discarded $NO_3$, and supplied Yamazaki' solution for lettuce as a control. The growth of leaf vegetables was not different among nutrient solution treatments except tap water. The nitrate content showed the highest in control, and followed by $+NH_4$ treatment, $-NO_3$ and tap water treatment, regardless of kind of vegetables. The vitamin C content in 3 different vegetables showed the opposite result against nitrate content so that the treatment that showing the highest vitamin C content was tap water in romaine and chungchima lettuces, and $-NO_3$ treatment in pak-choi. The vitamin C and the nitrate content showed high correlations; $r=-0.614^*$ in pak-choi, $-0.651^*$ in romaine lettuce, and $-0.804^{**}$ in chungchima lettuce.