• Title/Summary/Keyword: $NH_4-N$

Search Result 2,110, Processing Time 0.031 seconds

Using Plant Source as a Buffering Agent to Manipulating Rumen Fermentation in an In vitro Gas Production System

  • Kang, S.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1424-1436
    • /
    • 2013
  • The objective of this study was to investigate the effect of banana flower powder (BAFLOP) supplementation on gas production kinetics and rumen fermentation efficiency in in vitro incubation with different ratios of roughage to concentrate in swamp buffalo and cattle rumen fluid. Two male, rumen fistulated dairy steers and swamp buffaloes were used as rumen fluid donors. The treatments were arranged according to a $2{\times}2{\times}3$ factorial arrangement in a Completely randomized design by using two ratios of roughage to concentrate (R:C; 75:25 and 25:75) and 3 levels of BAFLOP supplementation (0, 2 and 4% of dietary substrate) into two different kinds of rumen fluid (beef cattle and swamp buffalo). Under this investigation, the results revealed that the rumen ecology was affected by R:C ratio. The pH declined as a result of using high concentrate ratio; however, supplementation of BAFLOP could buffer the pH which led to an improvement of ruminal efficiency. BAFLOP supplementation affected acetic acid (C2) when the proportion of concentrate was increased. However, there were no effect on total volatile fatty acid (TVFA) and butyric acid (C4) by BAFLOP supplementation. The microbial community was affected by BAFLOP supplementation, especially the bacterial population. As revealed by real-time PCR, the populations of F. succinogenes and R. albus were reduced by the high concentrate treatments while that of R. flavafaciens were increased. The populations of three dominant cellulolytic bacteria were enhanced by BAFLOP supplementation, especially on high concentrate diet. BAFLOP supplementation did not influence the ammonia nitrogen ($NH_3$-N) concentration, while R:C did. In addition, the in vitro digestibility was improved by either R:C or BAFLOP supplementation. The BAFLOP supplementation showed an effect on gas production kinetics, except for the gas production rate constant for the insoluble fraction (c), while treatments with high concentrate ratio resulted in the highest values. In addition, BAFLOP tended to increase gas production. Based on this study, it could be concluded that R:C had an effect on rumen ecology both in buffalo and cattle rumen fluid and hence, BAFLOP could be used as a rumen buffering agent for enhancing rumen ecology fed on high concentrate diet. It is recommended that level of BAFLOP supplementation should be at 2 to 4% of total dry matter of substrate. However, in vivo trials should be subsequently conducted to investigate the effect of BAFLOP in high concentrate diets on rumen ecology as well as ruminant production.

A Study on Investigate the Suitability of ${NH_4}^+$ Applications of Food Waste Water Instead of Urea in the Incineration of Municipal Solid Waste (생활폐기물 소각시 요구되는 요소수의 대체물질로 음식물 폐수 속의 암모니아 적용에 관한 연구)

  • Go, Sung Gyoo;Cho, Yong Kun;Lee, Young Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.97-105
    • /
    • 2012
  • This study examined for possibility of the food wastewater incineration treatment method as one of overland treatment method by incineration through liquefied spray of food wastewater when incinerating domestic wastes under operation and for the relationship, etc of air discharge material discharged in incineration, and the results of study are as follow: The food wastewater as one of overland treatment method was analysed 94-96% of moisture contents. Temperature of incinerator outduct during mixed incineration of food wastewater with MSW was average $897^{\circ}C$ and incineration of only MSW was $925^{\circ}C$. Temperature of the mixed incineration of food wastewater was dropped about $28^{\circ}C$ by incineration of only MSW. Concentration of nitrogen oxides(NOx) among air discharge gases was studied by 50ppm, 46ppm when inputting $200{\ell}/hr$, $300{\ell}/hr$ into the incinerator as the quantity of food wastewater. In the mixed incineration of food wastewater, generation speed of scales in the inside of a tubular exhaust gas boiler became rapid and the scale generation quantity became large but the exhaust gas boiler normally operated since scales were removed in cleaning of the tube with a compressive air cleaning facility and there was no opening clogging phenomena in a filter cloth of the filtering dust collector. The overland treatment method, not ocean dumping of food wastewater can be proposed as a technology since mixed incineration of food wastewater with MSW in the existing domestic waste incineration plant is possible, and operation costs of the incineration facility were reduced since use of chemicals such as ammonia and urinary hydrogen ion excretion, etc used in incineration facilities for removing nitrogen oxides(NOx).

Incorporation of Winter Rapeseed (Brassica napus) as Green Manure on Mineralization and Uptake of Nitrogen to Succeeding Corn (Zea mays L.) (유채의 녹비 환원에 의한 질소무기화 및 옥수수의 질소 흡수)

  • Choi, Bong-Su;Hong, Ki-Chan;Sung, Jwa-Kyung;Nam, Jae-Jak;Lim, Jung-Eun;Lee, Hyeon-Yong;Yang, Jae-E.;Ok, Yong-Sik
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.3
    • /
    • pp.381-391
    • /
    • 2009
  • Crop production can be secured by the cycle of green manure crops as an alternative of the chemical fertilizer. Recently, rapeseed (Brassica napus L.) has been cultivated in the south part of Korea for the production of biodiesel. In this research, we focused on recycling rapeseed residue, which is produced after harvesting the rapeseed for biodiesel, as a potential source of nitrogen to the succeeding crop. Pot experiment was conducted to evaluate the effects of winter rapeseed as green manure on mineralization and uptake of nitrogen to the succeeding corn (Zea mays L.). Result showed that total nitrogen and C/N ratio of rapeseed at the harvesting stage was 0.54% and 63, respectively. The incorporation of rapeseed without decomposition period slightly inhibited nitrogen uptake to the succeeding corn compared to those with 30 days decomposition period. The pH and EC values of soils increased by increasing the period of decomposition of rapeseed from 5.2 to 6.4 and from 0.05 dS/m to 0.21 dS/m, respectively. Significant amounts of $NH_4^+$ and $NO_3^-$ are released by incorporation of rapeseed. The succeeding corn took up 86% and 88% of inorganic nitrogen released from the rapeseed with and without decomposition period, respectively. The overall results suggested that the utilization of rapeseed residue as green manure can be an alternative source of nitrogen in corn-rapeseed double cropping system.

  • PDF

Application of a Numerical Model for the Prediction of Vertical Profiles of Electron Acceptors Based on Degradation of Organic Matter in Benthic Sediments (퇴적 유기물 분해과정에 따른 물질 거동 변화 예측을 위한 수치모델 적용)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.151-157
    • /
    • 2005
  • A one-dimensional numerical model was developed to simulate vertical profiles of electron acceptors and their reduced species in benthic sediments. The model accounted for microbial degradation of organic matter and subsequent chemical reactions of interest using stoichiometric relationships. Depending on the dominant electron acceptors utilized by microorganisms, the benthic sediments were assumed to be vertically subdivided into six zones: (1) aerobic respiration, (2) denitrification, (3) manganese reduction, (4) iron reduction, (5) sulfate reduction, and (6) methanogenesis. The utilizations of electron acceptors in the biologically mediated oxidation of organic matter were represented by Monod-type expression. The mass balance equations formulated for the reactive transport of organic matter, electron acceptors, and their corresponding reduced species in the sediments were solved utilizing an iterative multistep numerical method. The ability of model to simulate a freshwater sediments system was tested by comparing simulation results against published data obtained from lake sediments. The simulation results reasonably agreed with field measurements for most species, except for ammonia. This result showed that the C/N ratio (106/16) in the sediments is lower than what the Redfield formula prescribes. Since accurate estimates of vertical profiles of electron acceptors and their reduced species are important to determine the mobility and bioavailability of trace metals in the sediments, the model has potential application to assess the stability of selected trace metals in the sediments.

$TiO_2$-Encapsulated EFAL-Removed Zeolite Y as a New Photocatalyst for Photodegradation of Azo Dyes in Aqueous Solution

  • ChO, Won-Je;Sook-Ja Yoon,;Yoon, Min-Joong
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Application of a new photocatalyst has been attempted to improve the efficiency and rates of photocatalytic degradation of azo dyes by using a model dye such as Methyl Orange. As a new photocatalyst, $TiO_2$ encapsulated EFAL-removed zeolite Y ($TiO_2$ /EFAL-removed zeolite Y) has been synthesized by ion-exchange in the mixture of EFAL-removed zeolite Y with 0.05 M aqueous [$(NH_4)_2 TiO(C_2O_4)_2.H_2O$] [$TiO(C_2O_4)_2.H_2O$]. This new photocatalyst has been characterized by measuring XRD, IR and reflectance absorption spectra as well as ICP analysis, and it was found that the framework structure of $TiO_2$ /EFAL-removed zeolite Y is not changed by removing the extra-framework aluminum (EFAL) from the normal zeolite Y and the $TiO_2$ inside the photocatalyst exists in the form of $(TiO^{2+})_n$ nanoclusters. Based on the ICP analysis, the Si/Al ratio of the $TiO_2$ /EFAL-removed zeolite Y and the weight of $TiO_2$ were determined to be 23 and 0.061g in 1.0g photocatalyst, respectively. It was also found that adsorption of the azo dye in the $TiO_2$ /EFAL-removed zeolite is very effective (about 80 % of the substrate used). This efficient adsorption contributes to the synergistic photocatalytic activities of the $TiO_2$ /EFAL-removed zeolite by minimizing the required flux diffusion of the substrate. Thus, the photocatalytic reduction of methyl orange (MO) was found to be 8 times more effective in the presence of $TiO_2$ /EFAL-removed zeolite Y than in the presence of $TiO_2$ /normal zeolite Y. Furthermore, the photocatalytic reduction of MO by using 1.0 g of the $TiO_2$ /EFAL-removed zeolite Y containing 0.061g of $TiO_2$ is much faster than that carried out by using 1.0 g of Degussa P-25.

  • PDF

A Study of the Removal Characteristics of Heavy Metal(loid)s using by Product from NoMix Toilet and its Characterization (NoMix toilet 에서 발생하는 부산물을 이용한 수용액내 (준)중금속 제거 특성 및 가능성 연구)

  • Shim, Jaehong;Lim, Jeong-Muk;Kim, Jin-Won;Kim, Hae-Won;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.28-39
    • /
    • 2016
  • Struvite (MgNH4PO4 ⋅ 6H2O) and hydroxyapatite (HAP, Ca10(PO4)6(OH)2) precipitation in urine-separating toilets (NoMix toilets) causes severe maintenance problems and also reduce the phosphate and calcium content. Application of urine separating technique and extraction of by-products from human urine is a cost effective technique in waste water treatment. In this study, we extract urine calcite from human urine by batch scale method, using urease producing microbes to trigger the precipitation and calcite formation process. Extracted urine calcite (calcining at 800℃) is a potential adsorbent for removal of heavy metal(loid)s like (Cd2+, Cu2+, Ni2+, Pb2+, Zn2+ and As3+) along with additional leaching analysis of total nitrogen (T-N), phosphate (T-P) and chemical oxygen demand (COD). The transformations of calcite during synthesis were confirm by characterization using XRD, SEM-EDAX and FT-IR techniques. In additional, the phosphate leaching potential and adsorbate (nitrate) efficiency in aqueous solution was investigated using the calcinedurine calcite. The results indicate that the calcite was effectively remove heavy metal(loid)s lead up to 96.8%. In addition, the adsorption capacity (qe) of calcite was calculated and it was found to be 203.64 Pb, 110.96 Cd, 96.02 Zn, 104.2 As, 149.54 Cu and 162.68 Ni mg/g, respectively. Hence, we suggest that the calcite obtain from the human urine will be a suitable absorbent for heavy metal(loid)s removal from aqueous solution.

Change of Blooming Pattern and Population Dynamics of Phytoplankton in Masan Bay, Korea (마산만 식물플랑크톤의 대발생 양상의 변화와 군집 동태)

  • Lee, Ju-Yun;Han, Myung-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.147-158
    • /
    • 2007
  • To clarify the bloom pattern and species succession in phytoplankton community, the population dynamics with the determination of physico-chemical factors have been studies in Masan Bay, the south sea of Korea, for the periods November 2003-October 2004. Concentration of $NH_4-N$ was always higher than that of $NO_3-N$, which was similar level as compared to other costal areas. $PO_4-P$ concentration was lower than those in other coastal areas but similar to oligotrophic environments. Thus, phosphate seems the limiting nutrient rather than nitrogen. $SiO_2-Si$ concentration was also low as compared to other costal areas. Si:P ratio was low from autumn to winter, suggesting silicate and/or phosphate limitation during this period. The cell density of phytoplankton was high in winter 2003 and early autumn 2004. The carbon biomass was high in winter 2003 and summer 2004. And chlorophyll-a concentration was high in late autumn 2003 and summer 2004. Among 78 species of phytoplankton found in the bay during the investigated period, dominant species were two diatoms of Cylindrotheca closterium, Skeletonema costatum, and three dinoflagellates of Heterocapsa triquetra, Prorocentrum minimum, P. triestinum, and one raphidophyte of Heterosigma akashiwo. P. minimum dominated from late autumn to winter, but it was replaced by H. triquetra in late winter. P. triestinum dominated from late spring to early summer. Simultaneously, H. akashiwo cell density steadily increased, and it became dominant with C. closterium in late summer. With decreasing of H. akashiwo and C. closterium, S. costatum became the most dominant species in autumn. The canonical analyses showed that total phytoplankton cell density related to diatom cell density and it was affected by temperature, and concentrations of $NO_3-N\;and\;PO_4-P$. The carbon bio-mass and $chlorophyll-{\alpha}$ concentration related to diatom- and dinoflagellate cell densities and these were affected by flagellate cell density, salinity, and concentrations of $SiO_2-Si\;and\;PO_4-P$. Last six years monitoring data in Masan city obtained from Korean Meteorological Agency indicates gradual increase in air temperature. And the precipitation decreased especially in spring season. The winter bloom found in 2003 may be caused by the increase in the temperature and this bloom subsequently induced the nutrients depletion, which continued until next spring probably due to no precipitation. Therefore, the spring bloom, which had been usually observed in the bay, might disappear in 2004.

Uptake of Butachlor by Rice Seedlings and Its Phytotoxic Action to the Physiological Activities (수도묘(水稻苗)의 Butachlor 흡수(吸收) 및 약해발생(藥害發生) 특성(特性)에 관한 생리적(生理的) 연구(硏究))

  • Chung, Bong-Jin;Kwon, Yong-Woong
    • Korean Journal of Weed Science
    • /
    • v.1 no.1
    • /
    • pp.57-68
    • /
    • 1981
  • To clarify the mode of uptake of butachlor (2-chloro-2', 6'-diethyl-N-(butoxymethyl) acetanilide) by rice seedlings, its phytotoxic action to growth and physiological activities, studies were conducted with rice seedlings, at the 6th or 7th leaf-stage, which were treated with nutrient solution containing butachlor 0, 1.8, 3.6, 7.2, 10.8 or 14.4 ppm for 1, 2 or 4 days, in other case, the solutions were thereafter renewed with the untreated nutrient solution for further growth. Uptake of butachlor by rice seedlings increased linearly with increase of its concentration and duration of uptake. Butachlor inhibited root growth more than shoot growth, furthermore, the inhibitory effect on the shoot growth was greater in height than in weight or leafing rate. After 4 day-treatment, the rates of shoot growth in weight were delayed for 4 days. Butachlor inhibited water uptake rapidly and linearly with increase of its external concentration. The reduced uptake of water was followed by slow increase in the stomatal resistance of leaves. Upon completion of butachlor treatment, rate of water uptake was recovered rapidly, but the stomatal resistance with lag in time. Butachlor did not affect the uptake of cation such as ammonium, potassium and calcium, but inhibited substantially uptake of nitrate in proportion to its concentration. Especially, butachlor did not affect synthesis and degradation of nitrate reductase. In addition, butachlor has shown much greater binding to the lipidic substances from rice roots than the proteinous material. The primary mechanism of phytotoxic action of butachlor does not seem to be its effect on the protein synthesis, but great affinity to membranes. The inhibition of water uptake, and its subsequent closure of stomates is thought very important for reduced growth under mild phytotoxicity.

  • PDF

Solution Phase Photolyses of Substituted Diphenyl Ether Herbicides under Simulated Environmental Conditions (모조(模造) 환경조건하(環境條件下)에서의 치환(置換) Diphenyl Ether 제초제(除草劑)의 광분해(光分解)에 관(關)한 연구(硏究))

  • Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.17 no.3
    • /
    • pp.149-176
    • /
    • 1974
  • Eight substituted diphenyl ether herbicides and some of their photoproducts were studied in terms of solution phase photolysis under simulated environmental conditions by using a Rayonet photochemical reactor. The test compounds absorbed sufficient light energy at the wavelength of 300 nm to undergo various photoreactions. All the photoproducts were confirmed by means of tlc, glc, ir, ms, and/or nmr spectrometry. The results obtained are summarized as follows: Solution phase photolysis of C-6989: An exceedingly large amount of p-nitrophenol formed strongly indicates the readiness of the ether linkage cleavage of this compound as the main reaction in all solvents used. Photoreduction of nitro to amino group(s) and photooxidation of trifluoromethyl to carboxyl group were recognized as minor reactions. Aqueous photolysis of p-nitrophenol: Quinone(0.28%), hydroquinone (0.66%), and p-aminophenol (0.42%) were confirmed as photoproducts, in addition to a relatively small amount of an unknown compound. The mechanisms of formation of these products were proposed to be the nitro-nitrite rearrangement via $n{\rightarrow}{\pi}^*$ excitation and the photoreduction through hydrogen abstractions by radicals, respectively. Solution phase photolysis of Nitrofen: Photochemical reduction leading to the p-amino derivative was the main reaction in n-hexane. In aqueous solution, the photoreduction of nitro to amino group and hydroxylation predominated over the ether linkage cleavage. Nucleophilic displacement of the nitro group by hydroxide ion and replacement of chlorine substituents by hydroxyl group or, to a lesser extent, hydrogen were also observed as minor reactoins. Solution phase photolysis of MO-338: Photoreduction of the nitro to amino group was marked in the n-hexane solution photolysis. In the aqueous solution, photoreduction of the nitro substituent and hydroxylation were the main reactions with replacement of chlorine substituents by the hydroxyl group and hydrogen, and cleavage of the ether linkage as minor reactions. Photolyses of MC-4379, MC-3761, MC-5127, MC-6063, and MC-7181 in n-hexane and cyclohexane: Photoreduction of the nitro group leading to the corresponding amino derivative and replacement of one of the halogen substituents by hydrogen from the solvent used were the key reactions in each compound. Aqueous photolysis of MC-4379: Cleavage of the ether linkage, replacement of the carboxymethyl by hydroxyl group, hydroxylation, and replacement of the nitro by hydroxy group were prominent with photoreduction and dechlorination as minor reactions. Aqueous photolysis of MC-3761: Cleavage of the ether linkage, replacement of the carboxymethyl by hydroxyl group, and photoreduction followed by hydroxylation were the main reactions. Aqueous photolysis of MC-5127: Replacement of carboxyethyl by hydrogen was predominant with ether linkage cleavage, photoreduction, and dechlorination as minor reactions. It was obvious that the decarboxyethylation proceeded more readily than decarboxymethylation occurring in the other compounds. Aqueous photolysis of MC-6063: Cleavage of the ether linkage and photodechlorination were the main reactions. Aqueous photolysis of MC-7181: Replacement of the carboxymethyl group by hydrogen and monodechlorination were the remarkable reactions. Cleavage of the ether linkage and hydroxylation were thought to be the minor reactions. Aqueous photolysis of 3-carboxymethyl-4-nitrophenol: The photo-induced Fries rearrangement common to aromatic esters did not appear to occur in the carboxymethyl group of this type of compound. Conversion of nitro to nitroso group was the main reaction.

  • PDF

Catalytic Combustion of Methane over $AMnAl_{11}O_{19}$(A=La, Sr, Ba) and $CeO_2/LaAMnAl_{11}O_{19}$ ($AMnAl_{11}O_{19}$(A=La, Sr, Ba) 및 $CeO_2/LaAMnAl_{11}O_{19}$를 이용한 메탄의 촉매 연소)

  • Kim, Seongmin;Lee, Joon Yeob;Cho, In-Ho;Lee, Dae-Won;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.633-638
    • /
    • 2011
  • Mn substituted La, Sr or Ba-hexaaluminate were prepared by $(NH_4)_2CO_3$ co-precipitate method and calcined at $1,200^{\circ}C$ for 5 h. Catalysts were characterized by X-ray diffraction and $N_2$ physisorption and scanning electron microscope (SEM). Compared to $SrMnAl_{11}O_{19}$ and $BaMnAl_{11}O_{19}$, $LaMnAl_{11}O_{19}$ in which La located at mirror plane showed better crystallinity and high surface area, 13 $m^2/g$. $LaMnAl_{11}O_{19}$ revealed well developed plate-like structure which is characteristic structure of hexaaluminate. The catalytic activity of methane combustion increased in the following order: $LaMnAl_{11}O_{19}$ > $SrMnAl_{11}O_{19}$ > $BaMnAl_{11}O_{19}$ and was dependent on surface area of catalysts. 60 wt% $CeO_2/LaMnAl_{11}O_{19}$ calcined at $700^{\circ}C$ showed enhanced methane activity and methane was oxidized completely at low temperature ($700^{\circ}C$). It was confirmed that addition of ceria seems to be effective for the low and middle temperature combustion of methane. But, after calcination at high temperature of $1,200^{\circ}C$, it lost the promoting effect of ceria due to increase of ceria particle size and it had a limit to applying to the high temperature catalytic combustion.