• Title/Summary/Keyword: $NH_3-TPD$

Search Result 78, Processing Time 0.022 seconds

The Effect of HCl Gas on Selective Catalytic Reduction of Nitrogen Oxide (질소산화물의 선택적 환원 제거시 염화수소기체가 촉매에 미치는 영향)

  • Choung, Jin-Woo;Choi, Kwang-Ho;Seong, Hee-Je;Chai, Ho-Jung;Nam, In-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.609-617
    • /
    • 2000
  • This study is aimed at investigating an effect of HCl gas on selective reduction of NOx over a CuHM and $V_2O_5-WO_3/TiO_2$ catalyst. SCR process is the most effective method to remove NOx, but catalyst can be deactivated by the acidic gas such as HCl gas which is also included in flue gas from the incinerator. In dry condition of flue gas, the CuHM catalyst treated by HCl gas has shown higher NO removal activity than the fresh catalyst. The activity of the catalyst can be restored by treating at $500^{\circ}C$. On the contrary. $V_2O_5-WO_3/TiO_2$ catalyst is obviously deactivated by HCl and the deactivation increases in proportion to the concentration of HCl gas. The deactivated catalyst is not restored to it's original activity by heat treatment for regeneration. In wet flue gas stream, the CuHM catalyst has shown lower activity than fresh catalyst and $V_2O_5-WO_3/TiO_2$ catalyst was severely deactivated by HCl treatment. The activity loss of catalysts are mainly due to the decrease of Br$\ddot{o}$nsted acid site on the catalyst surface by $NH_3$ TPD. The change of BET surface area of CuHM catalyst after the reaction isn't observed but $V_2O_5-WO_3/TiO_2$ catalyst is observed. The amount of $Cu^{{+}{+}}$ and $V_2O_5$ is decreased after the reaction. From these results, it is expected that CuHM catalyst should be better than $V_2O_5-WO_3/TiO_2$ catalyst for its application to the incineration of flue gas.

  • PDF

Performance of CO adsorption on Transition metal impregnated zeolite molecular seive (전이금속 담지 제올라이트 분자체 이용한 CO 흡착특성)

  • Lee, Joo-Bo;Jung, Eui-Min;Kim, Dae-Kyung;Peng, MeiMei;Jang, Hyun-Tae;Cha, Wang-Seog
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.33-35
    • /
    • 2012
  • 본 연구에서는 전이금속 Cu, Mn이 함침된 제올라이트를 사용하여 일산화탄소의 흡착능을 연구하였다. 금속 복합 산화물촉매 제조는 Cu, Mn을 서로 다른 비율로 물리 혼합하여 지지체에 담지하였다. 제올라이트 분자체는 상용 13X를 사용하였다. 함침방법은 과잉용액 함침법을 사용하였고, 건조 후 소성 하여 산화물 형태로 담지하였다. 합성된 개질 흡착제의 표면특성 분석은 $N_2$흡착 및 탈착곡선을 통한 질소흡착 특성 분석으로 기공크기, 기공분포, 비표면적을 구하였으며, FT-IR, X-선 회절분석, 전자주사현미경, $NH_3$-TPD/TPR 으로 특성을 분석하였다. 흡착 실험은 고정층 반응기에서 수행하였으며, 내경 4 mm 석영관에 흡착제를 충진하고 흡착파과곡선을 Gas Chromatograph로 측정하여 Cu-Mn 제올라이트 촉매의 일산화탄소 흡착 성능을 연구하였다. Cu-Mn 함량 비율과 흡착조업조건에 따른 흡착능을 측정하여 최적 흡착조건을 구하였다.

  • PDF

Phosphoric Acid Modified Nb2O5: A Selective and Reusable Catalyst for Dehydration of Sorbitol to Isosorbide

  • Tang, Zhen-Chen;Yu, Ding-Hua;Sun, Peng;Li, Heng;Huang, He
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3679-3683
    • /
    • 2010
  • Niobium oxide ($Nb_2O_5$) and phosphated $Nb_2O_5$ were synthesized and used as catalysts for sorbitol dehydration to isosorbide. The characterization results of $N_2$ adsorption, XRD and $NH_3$-TPD revealed that the phosphoric acid modification could well prevent the crystallization of $Nb_2O_5$. And the amorphous phosphated $Nb_2O_5$ catalysts kept the relatively large surface area and stable acidity at high calcination temperature. The catalytic results showed that the selectivity to isosorbide could be dramatically enhanced over phosphated $Nb_2O_5$. The excellent catalytic performance with 100.0% sorbitol conversion and 62.5% isosorbide selectivity were obtained over the 0.8P/NBO-400 catalyst. Comparing with $Nb_2O_5$ catalysts, phosphated $Nb_2O_5$ catalysts regenerated through a simple calcination process showed no significant activity loss after recycling three runs.

Effect of Dry Surface Treatment with Ozone and Ammonia on Physico-chemical Characteristics of Dried Low Rank Coal (건조된 저등급 석탄에 대한 건식 표면처리가 물리화학적 특성에 미치는 영향)

  • Choi, Changsik;Han, Gi Bo;Jang, Jung Hee;Park, Jaehyeon;Bae, Dal Hee;Shun, Dowon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.532-539
    • /
    • 2011
  • The physical and chemical properties of the dried low rank coals (LRCs) before and after the surface treatment using ozone and ammonia were characterized in this study. The contents of moisture, volatiles, fixed carbon and ash consisting of dried LRCs before the surface treatment were about 2.0, 44.8, 44.9 and 8.9%, respectively. Also, it was composed of carbon of 62.66%, hydrogen of 4.33%, nitrogen of 0.94%, oxygen of 27.01% and sulfur of 0.09%. The dried LRCs was surface-treated with the various dry methods using gases such as ozone at room temperature, ammonia at $200^{\circ}C$ and then the dried LRCs before and after the surface treatment were characterized by the various analysis methods such as FT-IR, TGA, proximate and elemental analysis, caloric value, ignition test, adsorption of $H_2O$ and $NH_3-TPD$. As a result, the oxygen content increased and the calorific value, ignition temperature and the contents of carbon and hydrogen relatively decreased because the oxygen-contained functional groups were additionally generated by the surface oxidation with ozone which plays a role as an oxidant. Also, its $H_2O$ adsorption ability got higher because the hydrophilic oxygen-contained functional groups were additionally generated by the surface oxidation with ozone. On the other hand, it was confirmed that the dried LRCs after the surface treatment with $NH_3$ at $200^{\circ}C$ have the decreased oxygen content, but the increased calorific value, ignition temperature and contents of carbon and hydrogen because of the decomposition of oxygen-contained functional groups the on the surface. In addition, the $H_2O$ adsorption ability was lowered bucause the surface of the dried LRCs might be hydrophobicized by the loss of the hydrophilic oxygen-contained functional groups. It was concluded that the various physico-chemical properties of the dried LRCs can be changed by the surface treatment.

Preparation of 27Ni6Zr4O143M(M=Mg, Ca, Sr, or Ba)O/70 Zeolite Y Catalysts and Hydrogen-rich Gas Production by Ethanol Steam Reforming

  • Kim, Dongjin;Lee, Jun Su;Lee, Gayoung;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Sun-Min;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2073-2080
    • /
    • 2013
  • In this study the effects of adding alkaline-earth (IIA) metal oxides to NiZr-loaded Zeolite Y catalysts were investigated on hydrogen rich production by ethanol steam reforming (ESR). Four kinds of alkaline-earth metal (Mg, Ca, Sr, or Ba) oxides of 3.0% by weight were loaded between the $Ni_6Zr_4O_{14}$ main catalytic species and the microporous Zeolite Y support. The characterizations of these catalysts were examined by XRD, TEM, $H_2$-TPR, $NH_3$-TPD, and XPS. Catalytic performances during ESR were found to depend on the basicity of the added alkaline-earth metal oxides and $H_2$ production and ethanol conversion were maximized to 82% and 98% respectively in 27($Ni_6Zr_4O_{14}$)3MgO/70Zeolite Y catalyst at $600^{\circ}C$. Many carbon deposits and carbon nano fibers were seen on the surface of $30Ni_6Zr_4O_{14}$/70Zeolite Y catalyst but lesser amounts were observed on alkaline-earth metal oxide-loaded 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts in TEM photos after ESR. This study demonstrates that hydrogen yields from ESR are closely related to the acidities of catalysts and that alkaline-earth metal oxides reduce the acidities of 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts and promote hydrogen evolution by preventing progression to hydrocarbons.

Etherification of n-Butanol to Di-n-Butyl Ether over H3+xPW12-xNbxO40 (x=0, 1, 2, 3) Keggin and H6+xP2W18-xNbxO62 (x=0, 1, 2, 3) Wells-Dawson Heteropolyacid Catalysts (Keggin형 H3+xPW12-xNbxO40 (x=0, 1, 2, 3) 및 Wells-Dawson형 H6+xP2W18-xNbxO62 (x=0, 1, 2, 3) 헤테로폴리산 촉매를 이용한 n-Butanol로부터 Di-n-Butyl Ether의 제조)

  • Kim, Jeong Kwon;Choi, Jung Ho;Yi, Jongheop;Song, In Kyu
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.251-256
    • /
    • 2012
  • Etherification of n-butanol to di-n-Butyl Ether was carried out over Keggin $H_{3+x}PW_{12-x}Nb_xO_{40}$ (x=0, 1, 2, 3) and $H_{6+x}P_2W_{18-x}Nb_xO_{62}$ (x=0, 1, 2, 3) Wells-Dawson heteropolyacid catalysts. Niobium-substituted Keggin and Wells-Dawson heteropolyacid catalysts with different niobium content were prepared. Successful preparation of the catalysts was confirmed by FT-IR, ICP-AES, and $^{31}P$ NMR analyses. Their acid properties were determined by $NH_3$-TPD (Temperature-Programmed Desorption) measurements. Heteropolyacid catalysts showed different acid properties depending on niobium content in both series. The correlation between acid properties of heteropolyacid catalysts and catalytic activity was then established. Acidity of Keggin and Wells-Dawson heteropolyacid catalysts decreased with increasing niobium content, and conversion of n-butanol and yield for di-n-butyl ether increased with increasing acidity of the catalysts, regardless of the identity of heteropolyacid catalysts (without heteropolyacid structural sensitivity). Thus, acidity of heteropolyacid catalysts served as an important factor determining the catalytic performance in the etherification of n-butanol to di-n-Butyl Ether.

Effect of Dehydration on DMC Synthesis over Ceria Catalysts (Ceria 촉매상에서 탈수가 DMC 합성에 미치는 영향)

  • You, Jiin;Woo, Je-Min;Kim, Hyunuk;Park, Young Cheol;Park, Jong-Ho;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.196-202
    • /
    • 2016
  • In this study, ceria- based catalysts were prepared for dimethyl carbonate (DMC) synthesis and reaction conditions were evaluated for finding the optimal reaction route. In order to find optimal catalysts for DMC synthesis, calcination temperature and Cu(II) impregnation amount were evaluated. The oxidative carbonylation using methanol, carbon monoxide and oxygen and the direct synthesis using methanol and carbon dioxide were introduced for producing DMC. Following the law of Le Chatelier, the dehydration reaction was applied for enhancing the reactivity (methanol conversion) as removing water during the reaction. 2-cyanopyridine, as a chemical dehydration agent, was used. In the case of the oxidative carbonylation, methanol conversion rate increased from 15.1% to 38.7% and the DMC selectivity increased from 0% to 98.8%. In the case of the direct synthesis, methanol conversion rate increased from 1.0% to 77.8% and the DMC selectivity increased from 41.2% to 100.0%.

Decomposition of HDPE over HZSM-5 Catalyst Modified with Si, P and Mg for Recycle of Waste Plastics (Si, P, Mg로 개질된 HZSM-5 촉매상에서 폐플라스틱(HDPE) 재활용을 위한 분해반응)

  • Yu, Eui-Yeon;Kim, Sang-Chai
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.955-960
    • /
    • 2006
  • Catalytic decomposition over HZSM-5 was carried out in semi-batch reactor to recover gasoline from waste plastics(HDPE). To enhance the liquid yield with a molecule range of gasoline, the properties of catalytic decomposition were investigated over a commercial Si/ZSM-5 catalyst and HZSM-5 catalysts modified with P and Mg. Optimum loadings of P and Mg on HZSM-5 were 0.5 wt% and 2.0 wt%, respectively, based on conversion and liquid yield. $NH_3-TPD$ profile indicated that strong and weak acid sites totally decreased in P loading on HZSM-5 catalyst, strong acid sites moderately decreased and weak acid sites sharply reduced in Mg loading on HZSM-5 catalyst. In the case of Si/ZSM-5 catalyst, all acid sites almost disappeared, subsequently, catalytic decomposition significantly decreased, and little liquid product was produced. When HZSM-5 catalyst was modified with P and Mg, the carbon distribution of liquid product was shifted to lower carbon number and its all components was within a molecular range of gasoline($C_5-C_{11}$). Especially, over Mg(2.0 wt%)/ZSM-5 catalyst, 55.8% of liquid yield with 100% of a molecular range of gasoline, was obtained at $400^{\circ}C$, suggesting it as a promising catalyst for recycle of waste plastics.

SCR Reaction Activity and SO2 Durability Enhancement in Accordance with Manufacturing Conditions of the V/TiO2 Catalysts (V/TiO2 촉매의 제조조건에 따른 SCR 반응활성 및 SO2 내구성 증진에 대한 연구)

  • Lee, Seung Hyun;Seo, Jeong Uk;Byeon, Sang Geun;Hong, Sung Chang
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.114-121
    • /
    • 2016
  • In this studies, SCR reaction activity and SO2 durability enhancement study on manufacturing conditions of the V/TiO2 catalyst was carried out for the removal of nitrogen oxides generated in the combustion furnace. The catalysts are characterized by XPS, Raman, H2-TPR and SO2-TPD. When the vanadium was contained of 2 wt%, it showed excellent SO2 durability and catalytic activity. and When the tungsten is added as a promotor, the enhancement of reducing ability at a low temperature and reduction of SO2 adsorption capacity improved the reaction activity and SO2 durability. V/W/TiO2 are prepared by the lower pH of vanadium solution, vanadium was highly dispersed on the surface and inhibited the formation of crystalline V2O5. in addition, it was confirmed that this catalyst can be used as excellent resistance to high concentration of CO in the combustion furnace.

Catalytic Cracking of Pyrolysed Waste Lube-oil Into High Quality Fuel Oils Over Solid Acid Catalysts (고체산 촉매를 이용한 페윤활유 열분해유의 고급연료유화 특성 연구)

  • 박종수;윤왕래;고성혁;김성현
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.248-255
    • /
    • 1999
  • Catalytic cracking of pyrolysed waste lubricating oil over solid acid catalysts (HY zeolite, ${\beta}$-zeolite, HZSM-5) has been carried out in a micro-fixed bed system. The feed oil for catalytic activity tests has been prepared by thermal cracking of waste lubricating oil under the reaction conditions of 480$^{\circ}C$, 60 min. Optimum reaction conditions for the maximum light oil yields($\_$21/) were WHSV(weight hourly space velocity)=1 at 375$^{\circ}C$. The amounts of total and strong acid sites appeared to be the largest in ${\beta}$-zeolite as determined by NH$_3$, TPD. It is seen that the catalytic activity order, in terms of the light fuel oil ($\_$21/) production, were HY zeolite)${\beta}$-zeolite>HZSM-5. Also, coke formation followed the same order. The highest activity in HY zeolite may be attributed from the fact that it has supercages facilitating the easy diffusion of larger molecules and also the effectiveness of the acid sites for cracking within the pore. This fact could be confirmed by the coke formation characteristics.

  • PDF