• Title/Summary/Keyword: $NH_3-NH_4^+$

Search Result 3,827, Processing Time 0.033 seconds

THE PROCESSING OF CLUMPY MOLECULAR GAS AND STAR FORMATION IN THE GALACTIC CENTER

  • LIU, HAUYU BAOBAB;MINH, YOUNG CHOL;MILLS, ELISABETH
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.133-137
    • /
    • 2015
  • The Galactic center uniquely provides opportunities to resolve how star clusters form in neutral gas overdensities engulfed in a large-scale accretion flow. We have performed sensitive Green Bank 100m Telescope (GBT), Karl G. Jansky Very Large Array (JVLA), and Submillimeter Array (SMA) mapping observations of molecular gas and thermal dust emission surrounding the Galaxy's supermassive black hole (SMBH) Sgr $A^{\ast}$. We resolved several molecular gas streams orbiting the center on ${\gtrsim}10$ pc scales. Some of these gas streams appear connected to the well-known 2-4 pc scale molecular circumnuclear disk (CND). The CND may be the tidally trapped inner part of the large-scale accretion flow, which incorporates inflow via exterior gas filaments/arms, and ultimately feeds gas toward Sgr $A^{\ast}$. Our high resolution GBT+JVLA $NH_3$ images and SMA+JCMT 0.86 mm dust continuum image consistently reveal abundant dense molecular clumps in this region. These gas clumps are characterized by ${\gtrsim}100$ times higher virial masses than the derived molecular gas masses based on 0.86 mm dust continuum emission. In addition, Class I $CH_3OH$ masers and some $H_2O$ masers are observed to be well associated with the dense clumps. We propose that the resolved gas clumps may be pressurized gas reservoirs for feeding the formation of 1-10 solar-mass stars. These sources may be the most promising candidates for ALMA to probe the process of high-mass star-formation in the Galactic center.

Comparison of analytical methods for quantifying total chromium in soil using Atomic Absorption Spectrometer (AAS) and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) (토양 시료 중 Atomic Absorption Spectrometry (AAS) 및 Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES)를 이용한 총 크롬 분석방법 비교)

  • Lee, Hong-gil;Kim, Ji-in;Byun, Yoonjoo;Kim, Hyunkoo;Yoon, Jeong Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.22-28
    • /
    • 2017
  • The accuracy of analytical results in response to the use of different additives ($NH_4Cl$, KCl, $LaCl_3$) and oxidant gases was evaluated and compared by using Atomic Absorption Spectrometry (AAS). Identification of spectroscopic interferences and possible improvements in Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) analysis were also discussed. The average accuracies of total chromium using Certified Reference Materials (CRMs) were found to be 72.1~94.2% in air/acetylene flame condition by AAS, and they were improved to 100.5~110.5% when the oxidants was changed to nitrous oxide rather than adding the additives. The field samples showed similar trends to CRMs, but chromium concentrations were highly variable depending on analytical conditions. The average accuracies using CRMs were estimated to be 89.3~166.1% by ICP-AES, and improved to below 121.7% after eliminating iron interference. Field samples with low chromium and high iron concentration were measured to be > 30% lower in total chromium concentrations by ICP-AES than AAS in nitrous oxide/acetylene flame. Total chromium concentrations in soil could be analyzed with better accuracy under nitrous oxide/acetylene flame by AAS because it was more effective to increase the temperature of the flame than to eliminate the chemical interference for maximizing atomization of chromium. When using ICP-AES, interference substances, total chromium levels, and analytical conditions should be also considered.

Experiments of Rice Cultivation for Establishment of Total Nitrogen(T-N) Item of Agricultural Water Standards (농업용수 수질기준 T-N 항목 설정을 위한 벼생육 실험)

  • Choi, Sun-Hwa;Kim, Ho-il;Yoon, Kyung-Seup;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.301-306
    • /
    • 2004
  • The present water quality standards for agricultural were established without considering the effects of water quality on the safety, growth, yield and quality of crops. This study was carried out to investigate the effects of irrigation water quality on the growth, yield, and grain quality of rice, and to acquire basic knowledges to set up water quality standards for irrigation. The field and pot experiments were conducted with irrigation water that was previously adjusted four concentrations (control, 5, 10, 20 mg/L) and six concentrations (control, 5, 10, 15, 20, 30 mg/L) by $NH_4NO_3$ solution and replicated three and four times with randomized block design, respectively. The results of this study showed that the inorganic nutrient of rice plant, rice protein contents and number of panicle tended to increase as the T-N concentration in irrigation water was increased. In addition, grain yield at T-N 10 mg/L and 20mg/L were significantly higher than the control at the field experiment. From the pot experiment at T-N 30 mg/L, the percentage of head rice was slightly lower due to the increase of green kernel and white belly/core kernel.

A Study on the Treatment of Swine Wastewater by Using Intermittently Aerated Activated Sludge Process (간헐폭기법에 의한 돈사 폐수 처리에 관한 연구)

  • Yang, Tae-Du;Lee, Mi-Kyung;Chung, Yoon-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.86-96
    • /
    • 1998
  • In this study, an intermittently aerated activated sludge process, modified process from conventional activated sludge process, was developed to treat high strength swine wastewater, which has been blamed as major pollutant for stream pollution. Therefore, the optimum cycle for oxic and anoxic period, SRT, and OLR were studied as design parameters. The effects of different time interval for oxic and anoxic period on nitrification and denitrification were examined by operating two reactors with 60/60min and 60/90min as oxic/anoxic period. Although the reactor with 60/60min showed complete denitrification of $NO_x-N$ generated during oxic period, the reactor with 60/90min showed incomplete nitrification due to the inactivity of nitrifier by accumulated $NH_3-N$ toxicity during anoxic period. Therefore, it is recommended to operate same interval for oxic and anoxic period. In order to determine the optimum cycle for oxic/anoxic period, four different reactors with 30/30, 60/60, 90/90 and 120/120min were examined. The reactor operation with 90/90min was optimum to get the most stable results in this study. However, the optimum cycle for oxic and anoxic period should be changed with characteristics of influent wastewater and operating conditions. According to lie operation results of three reactors with SRT of 15, 20 and 30days. The reactor with 2Odays SRT showed best removal efficiency of T-N. The optimum OLR would be $2.5Kg\;COD/m^3/day$ which showed the most stable nitrification and denitrification. Since characteristics of influent wastewater in the real system has a severe fluctuation, so it is very difficult to determine each interval for oxic and anoxic period. Therefore, ORP curves, describing the change of oxidation/reduction potential in reactor, can be used as a control parameter for automatic control of oxic and anoxic period. In other words, bending point (Nitrate Knee) of ORP curve during anoxic period could be used as a starting point of oxic period.

  • PDF

Influences of Bulking Materials on Sustainable Livestock Mortality Composting (부자재 종류가 친환경적 사축퇴비화에 미치는 영향)

  • Won, Seung Gun;Park, Ji Young;Cho, Won Sil;Kwag, Jung Hoon;Choi, Dong Yoon;Ahn, Hee Kwon;Ra, Chang Six
    • Journal of Animal Science and Technology
    • /
    • v.55 no.5
    • /
    • pp.483-488
    • /
    • 2013
  • To develop a sustainable composting method for livestock mortality, a natural aeration-composting process was designed and the influences of bulking materials on the mortality composting process were studied. Bulking materials (e.g., compost, swine manure, sawdust, and rice husks), easily supplied at the scene of an animal mortality outbreak, were tested in this research. A lab-scale composting system (W34 ${\times}$ L60 ${\times}$ H26 cm) was made using 100 mm styrofoam, and natural aeration was achieved through pipes installed on the bottom of the system. Four treatments were designed (compost, compost + swine feces, sawdust, and rice husks treatment groups) and all experiments were done in triplicates. During composting for 40 days, no leachate was observed in compost and sawdust treatment groups, whereas 18 and 8.2 ml leachate/kg-mortality was emitted from the compost + feces and rice husks treatment groups, respectively. Dimethyl disulfide (DMDS) emission during the composting was very low in all treatment groups, possibly due to the bio-filtering function of the compost cover layer on the pile. The mortality degradability in compost, compost + feces, sawdust, and rice husks groups was 25.3, 25.8, 13.5, and 14.5%, respectively, showing significantly higher levels in compost and compost + feces groups (p<0.05). Also, only the compost + feces group produced enough heat (over $55^{\circ}C$) and lasted for 7 days, indicating that bio-security cannot be guaranteed without feces supplementation.

Assessment of an Optimum Biochar Application Rate for Tomato(Solanum lycopersicum L.) Cultivation (토마토 재배를 위한 바이오차 최적시용 비율 평가)

  • Park, Do-Gyun;Hong, Seung-Gil;Jang, Eunsuk;Shin, Joung-Du
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.39-48
    • /
    • 2019
  • Objective of this study was to evaluate an optimum biochar application rate and estimate the carbon sequestration based on the soil chemical properties and growth responses for biochar application during tomatoes cultivation. The treatments consisted of control as recommended application rates of fertilizers, 0.01%, 0.03%, 0.05%, and 0.07% of biochar application(w/w, biochar:soil). For effects of soil chemical properties, the $NO_3-N$contents in the soil were peaked at 9 days after transplanting. But there was not significant difference(p>0.05) among the treatments during cultivation periods. However, $NH_4-N$ contents in the biochar treatment were lower than the control until 14 days of transplanting. $P_2O_5$ contents in the biochar treatments were lower than that of the control until 19 days after transplanting except 0.01% of biochar application plot. $K_2O$ contents in soils treated with 0.01% and 0.03% of biochar were higher until 6 days after transplanting than that in the control. For N use efficiency of biochar application, it was observed that the 0.05% biochar application plot was highest among the treatments. The highest carbon sequestration was estimated at $2.83mg\;kg^{-1}$ for 0.03% of biochar application. However, it is considered that the optimum biochar application rate was 0.05% for tomato cultivation, considering the growth characteristics and yield components.

Factors Affecting the Formation of Iodo-Trihalomethanes during Chlorination in Drinking Water Treatment (정수처리에서 염소 처리시 요오드계 트리할로메탄류 생성에 영향을 미치는 인자들)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Kim, Kyung-A;Song, Mi-Jeong;Choi, Jin-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.542-548
    • /
    • 2014
  • Effects of bromide ($Br^-$) and iodide ($I^-$) concentrations, chlorine ($Cl_2$) doses, pH, temperature, ammonia nitrogen concentrations, reaction times and water characteristics on formation of iodinated trihalomethanes (I-THMs) during oxidation of iodide containing water with chlorine were investigated in this study. Results showed that the yields of I-THMs increased with the high bromide and iodide level during chlorination. The elevated pH significantly increased the yields of I-THMs during chlorination. The formation of I-THMs was higher at $20^{\circ}C$ than $4^{\circ}C$, $10^{\circ}C$ and $30^{\circ}C$. In chloramination study, addition of ammonium chloride ($NH_4Cl$) markedly increased the formation of I-THMs. Among the water samples collected from seven water sources including wastewater treatment plant (WWTP) effluent water (EfOM water), prepared humic containing water (HA water) and algal organic matter (AOM) containing water (AOM water), EfOM water generated the highest yields of I-THMs ($12.31{\mu}g/mg$ DOC), followed by HA water ($4.96{\mu}g/mg$ DOC), while AOM water produced the lowest yields of I-THMs ($0.99{\mu}g/mg$ DOC). $SUVA_{254}$ values of EfOM water, HA water and AOM water were $1.38L/mg{\cdot}m$, $4.96L/mg{\cdot}m$ and $0.97L/mg{\cdot}m$, respectively. The I-THMs yields had a low correlation with $SUVA_{254}$ values ($r^2$ = 0.002).

Antifungal Activity of Bacillus sp. AM-651 Against Phytophthora capsici (고추역병 유발병원균 Phytophthora capsici에 대한 Bacillus sp. AM-651의 항진균활성)

  • Lee, Jung-Bok;Shin, Jeong-Hak;Jang, Jong-Ok;Shin, Kee-Sun;Choi, Chung-Sik;Kim, Kun-Woo;Jo, Min-Sub;Jeon, Chun-Pyo;Kim, Yun-Hoi;Kwon, Gi-Seok
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.227-232
    • /
    • 2008
  • Biological antagonists of Phytophthora capsici were isolated from soil in Gyeongbuk, Korea. Among the isolated bacteria, a Bacillus sp. was identified from l6S rDNA sequence analysis and named Bacillus sp. AM-651. Bacillus sp. AM-65l strain which can strongly a antifungal activity against Phytophthora capsici. Culture conditions for the maximum production of the antagonistic substance were optimized. The production of antibiotic were high on modified Davis mineral medium pH 7 at $30^{\circ}C$. The medium for highest production of the agonistic substance optimized. It is composed the best activity on glucose, $(NH_4)_2SO_4$ and $K_2HPO_4$ at 0.5%, 0.1%, and 0.7%, respectively. By time course of culture solution selected Bacillus sp. AM-65l, the culture solution after 48hrs had strongly growth inhibition rate against P. capsici. And culture solution of Bacillus sp. AM-651 was stable within a pH range $5{\sim}11$ and temperature range $4{\sim}70^{\circ}C$. Bacillus sp. AM-651 cultured broth shown fungal growth inhibitory activity against B. sorokiniana, B. cinerea, R. solani avove and beyond P. capsici and comparatively showed a high activity against C. gloeosporioides, B. dothidea, B. cinerea and F. graminearum by agar diffusion method.

Species Diversity of Riparian Vegetation by Soil Chemical Properties and Water Quality in the Upper Stream of Mankyeong River (만경강 상류 수질 및 식생분포와 토양환경에 따른 하천식생의 종 다양성)

  • Lee, Kyeong-Bo;Kim, Chang-Hwan;Lee, Deog-Bae;Kim, Jong-Gu;Park, Chan-Won;Na, Seoung-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.100-110
    • /
    • 2003
  • This study was conducted to evaluate influence of chemical properties in the riparian on the species diversity and to get plant information for enhancement of natural purification in Mankyeong River. The concentration of total nitrogen was high in Jeonju and Sam stream, while that of total nitrogen showed the highest peak in Winter. Concentrations of $NH_4-N$ was $0.01{\sim}0.06\;mg/L$ in Gosan and Soyang stream. The water quality of upstream along with Mankyeong River was suitable for the irrigation source. The riparian vegetation was investigated by Zurich-Montpellier school's method from June, 2001 to September, 2002. The number of riparian plants were 59 families, 129 genera, 165 species, 20 varieties in Gosancheon, on the while 53 families, 111 genera, 141 species, 19 varieties in Soyangcheon. The number of riparian plants in Bari basin was higher than that of other sites namely, 73 families, 134 genera, 218 species, 33 varieties. Riparian vegetation was consisted of 12 plant communities. The contents of organic matter, total nitrogen and electrical conductivity had negative relationship with species diversity (Species richness index, Heterogeneity index, Species evenness index Species number). On the while, species diversity had positive relationship with soil pH. Species diversify of the plant communities were affected by topography and disturbance.

Studies on the Production of Artificial Zeolite from Coal Fly Ash and Its Utilization in Agro-Environment

  • Lee, Deog-Bae;Henmi, Teruo;Lee, Kyung-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.401-418
    • /
    • 2000
  • 1. Production of the artificial zeolite from coal ash Coal fly ash is mainly composed of several oxides including $SiO_2$ and $Al_2O_3$ derived from inorganic compounds remained after burning. As minor components, $Fe_2O_3$ and oxides of Mg, Ca, P, Ti (trace) are also contained in the ash. These components are presented as glass form resulting from fusion in the process of the combustion of coal. In other word, coal ash may refer to a kind of aluminosilicate glass that is known to easily change to zeolite-like materials by hydrothermal reaction. Lots of hot seawater is disposing near thermal power plants after cooling turbine generator periodically. Using seawater in the hydrothermal reaction caused to produce low price artificial zeolite by reduction of sodium hydroxide consumption, heating energy and water cost. As coal ash were reacted hydrothermally, peaks of quartz and mullite in the ash were weakened and disappeared, and new Na-Pl peaks were appeared strengthily. Si-O-Si bonding of the bituminous coal ash was changed to Si-O-Al (and $Fe^{3+}$) bonding by the reaction. Therefore the produced Na-Pl type zeolite had high CEC of 276.7 $cmol^+{\cdot}kg^{-1}$ and well developed molecular sieve structure with low concentration of heavy metals. 2. Utilization of the artificial zeolite in agro-environment The artificial zeolite(1g) could remove 123.5 mg of zinc, 164.7 mg copper, 184.4 mg cadmium and 350.6 mg lead in the synthetic wastewater. The removability is higher 2.8 times in zinc, 3.3 times in copper, 4.7 times in cadmium and 4.8 times in lead than natural zeolite and charcoal powder. When the heavy metals were treated at the ratio of 150 $kg{\cdot}ha^{-1}$ to the rice plant, various growth inhibition were observed; brownish discoloration and death of leaf sheath, growth inhibition in culm length, number of panicles and grains, grain ripening and rice yield. But these growth inhibition was greatly alleviated by the application of artificial zeolite, therefore, rice yield increased $1.1{\sim}3.2$ times according to the metal kind. In addition, the concentration of heavy metals in the brown rice also lowered by $27{\sim}75%$. Artificial Granular Zeolites (AGZ) was developed for the purification of wastewater. Canon exchange capacity was 126.8 $cmol^+{\cdot}kg^{-1}$. AGZ had Na-Pl peaks mainly with some minor $C_3S$ peaks in X-ray diffractogram. In addition, AGZs had various pore structure that may be adhere the suspended solid and offer microbiological niche to decompose organic pollutants. AGZ could remove ammonium, orthophosphate and heavy metals simultaneously. Mixing ratio of artificial zeolite in AGZs was related positively with removal efficiency of $NH_4\;^+$ and negatively with that of $PO_4\;^{3-}$. Root growth of rice seedling was inhibited severely in the mine wastewater because of strong acidity and high concentration of heavy metals. As AGZ(1 kg) stayed in the wastewater(100L) for 4days, water quality turned into safely for agricultural usage and rice seedlings grew normally.

  • PDF