• Title/Summary/Keyword: $NH_3-NH_4^+$

Search Result 3,827, Processing Time 0.031 seconds

Adsorption of ammonia using mesoporous alumina prepared by a templating method

  • Yeom, Changjoo;Kim, Younghun
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.401-406
    • /
    • 2017
  • Ammonia, $NH_3$, is a key chemical widely used in chemical industries and a toxic pollutant that impacts human health. Thus, there is a need for the development of effective adsorbents with high uptake capacities to adsorb $NH_3$. An adsorbent with a high surface area and a small pore size is generally preferred in order to have a high capacity for the removal of $NH_3$. The use inorganic nanoporous materials as gas adsorbents has increased substantially and emerged as an alternative to zeolite and activated carbon. Herein, mesoporous alumina (MA) was prepared and used as an $NH_3$ adsorbent. MA showed good pore properties such as a uniform pore size and interlinked pore system, when compared to commercial adsorbents (activated carbon, zeolite, and silica powder). MA has free hydroxyl groups, serving as useful adsorption sites for $NH_3$. In an adsorption isotherm test, MA exhibited 4.7-6.5 times higher uptake capacities for $NH_3$ than commercial adsorbents. Although the larger surface areas of adsorbents are important features of ideal adsorbents, a regular and interlinked adsorbent pore system was found to be a more crucial factor to adsorb $NH_3$.

Performance of Chlorella vulgaris for the Removal of Ammonia-Nitrogen from Wastewater

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.235-239
    • /
    • 2013
  • In the present investigation, the efficiency of Chlorella vulgaris (C. vulgaris) was evaluated for the removal of ammonia-nitrogen from wastewater. Eight different wastewater samples were prepared with varied amounts of $NH_4-N$ concentrations from 15.22 to 205.29 mg/L. Experiments were conducted at pH $7.5{\pm}0.3$, temperature $25^{\circ}C{\pm}1^{\circ}C$, light intensity $100{\mu}E/m^2/s$, and dark-light cycles of 8-16 hr continuously for 8 days. From the results, it was found that $NH_4-N$ was completely removed by C. vulgaris, when the initial concentration was between 5.22-25.24 mg/L. However, only 50% removal was obtained when the $NH_4-N$ concentration was 85.52 mg/L, which further decreased to less than 32% when the $NH_4-N$ concentration exceeded 105.43 mg/L. The further influence of nitrogen on chlorophyll was studied by various $NH_4-N$ concentrations. The maximal value of chlorophyll a (Chl a) content was found to be 19.21 mg/L for 65.79 mg/L $NH_4-N$ concentration, and the maximum specific $NH_4-N$ removal rate of 1.79 mg/mg Chl a/day was recorded at an $NH_4-N$ concentration of 85.52 mg/L. These findings demonstrate that C. vulgaris could potentially be employed for the removal of $NH_4-N$ from wastewater.

Composting Characteristics of a Continuous Aerated Pilot-scale Reactor Vessel for Commercial Composting (상업용 퇴비화를 위한 연속 통기식 파이로트 규모 반응조의 퇴비화 특성)

  • 홍지형;최병민
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.149-160
    • /
    • 1998
  • Hog manure slurry amended with sawdust was composted in pilot-scale reactor vessels using continuous aeration nuder different C/N ratios and pH conditions during composting high rate (decomposition) process. For each material two replicated piles were built and monitored over a period of three weeks. The compost piles had an initial volume of 0.18 ㎥. In this study we evaluated the temperature in compost O2 and CO2 evolution, aeration rate, NH3 concentration etc. and investigated the stability of compost during composting high rate process. According to measured results, while the maximum NH3 concentration during composting high rate process. According to measured results, while the maximum NH3 concentration during composting high rate was in the range of 213 to 412 ppm on 5th day which was near the optimum C/N(22∼24) and pH(7.5∼7.9). And then, the NH3 concentration reduced to between 22∼26 ppm by 13th day. The maximum NH3 concentration for the lower C/N(18∼19) and pH value of 6 reached 574∼1,063 ppm by the 16th through 11th days and the NH3 concentration during continuous aerated composting high rate process, it was more important to manage NH3 gas so that compost odor is reduced.

  • PDF

[ $NH_3$ ] Pulse Plasma Treatment for Atomic Layer Deposition of W-N Diffusion Barrier (암모니아 펄스 플라즈마를 이용한 원자층 증착된 질화텅스텐 확산방지막 특성)

  • Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.29-35
    • /
    • 2004
  • We have deposited the W-N diffusion barrier on Si substrate with $NH_3$ pulse plasma enhanced atomic layer deposition (PPALD) method by using $WF_6$ and $NH_3$ gases. The $WF_6$ gas reacts with Si that the surface corrosion occurs severely, but the $NH_3$ gas incorporated with pulse plasma and $WF_6$ gas are easily deposited W-N thin film without Si surface corrosion. Because the $NH_3$ with pulse plasma can be active species dissociated and chemisorbed on Si. Thus the Si surface are covered and saturated with nitrogen, which are able to deposit the W-N thin film. We also examine the deposition mechanism and the effect of $NH_3$ pulse plasma treatment.

  • PDF

Chemical characteristics of PM2.5 fine particles collected at 1100 site of Mt. Halla during spring seasons between 1998 and 2004 (1998-2004년 봄철에 한라산 1100 고지에서 채취한 PM2.5 미세먼지의 화학 특성)

  • Kim, Won-Hyung;Kang, Chang-Hee;Hong, Sang-Bum;Ko, Hee-Jung;Lee, Won
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.383-392
    • /
    • 2007
  • The water soluble components were analyzed in the $PM_{2.5}$ fine particles collected at the 1100 site of Mt. Halla for the spring seasons between 1998 and 2004. The $PM_{2.5}$ mass concentrations were within $13.4{\pm}9.6{\sim}21.7{\pm}20.0{\mu}g/m^3$, and the concentrations of ionic components were in the order of nss-$SO{_4}^{2-}$ > $NH{_4}{^+}$ > $NO{_3}{^-}$ > $Ca^{2+}$ > $K^+$ > $Na^+$ > $Cl^-$ > $Mg^{2+}$, in which the concentration of nss-$SO{_4}^{2-}$($3.41{\pm}2.42{\mu}g/m^3$) was the highest. The concentrations of $NH{_4}{^+}$, $SO{_4}^{2-}$, and $NO{_3}{^-}$, the secondary pollutants, were respectively 0.60~1.50, 2.86~4.42, and $0.24{\sim}1.57{\mu}g/m^3$, which had occupied 88 % of the total ionic components, on the other hand, the concentrations of marine species were less than 5 %. The nss-$SO{_4}^{2-}$ showed the high correlation with $NH{_4}{^+}$, $K^+$, so that $NH{_4}{^+}$ and nss-$SO{_4}^{2-}$ might exist in the form of $(NH_4)_3H(SO_4)_2$ and $(NH_4)_2SO_4$ in fine particles. From the backward trajectory analysis, in case of high concentrations of $NH{_4}{^+}$ and nss-$SO{_4}^{2-}$ simultaneously, the air masses were originated and stagnated at the east region of China for a while, then moved into the atmosphere of Jeju. However, in case of $NO{_3}{^-}$ and nss-$Ca^{2+}$, the air masses originated at China and Siberia were moved into Jeju via the eastern China.

Effect of Root-zone Temperature and Ratios of $\textrm{NO}_3$-N to $\textrm{NH}_4$-N in the Nutrient Solution on the Growth and Yield of Hydroponically Grown Pepper Plant (근권온도와 양액중의 $\textrm{NO}_3$-N/$\textrm{NH}_4$-N 비율이 양액재배 고추의 생육ㆍ수량에 미치는 영향)

  • 정현복
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.152-158
    • /
    • 1995
  • This experiment was undertaken in order to clarify effect of NO$_3$-N/NH$_4$-N ratios(NO$_3$/NH$_4$ : 10:0, 8:2) in the nutrient solution on growth, yield, photosynthetic rate, relative concentration of chlorophyll and root activity of hydroponically grown pepper plants at three different root- zone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$. Plant height, leaf number, stem diameter, fresh and dry weight of leaf and root were no effect in by three root- zone temperatures. However, leaf number, stem diameter, fresh and dry weight of leaf and stem, dry weight of root at 18$^{\circ}C$, 22$^{\circ}C$ and $25^{\circ}C$ increased when NH$_4$-N was added to the solution. Under root-Bone temperatures of 18$^{\circ}C$, 26$^{\circ}C$ condition, fruit length were longer by the addition of NH$_4$-N. Fruit number and yield increased by the addition of NH$_4$-N at three root-zone temperatures. Photosynthetic rate decreased as root - zone temperature increased. Under root-zone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$ condition, photosynthetic rate increased significantly by the addition of NH$_4$-N. Chlorophyll content of plants increased at 22$^{\circ}C$. Under root-zone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$ condition, chlorophyll content of plants increased by the addition of NH$_4$-N. Root activity of increased at 26$^{\circ}C$ Under root-Bone temperatures of 18$^{\circ}C$, 22$^{\circ}C$ and 26$^{\circ}C$ condition, root activity increased by the addition of NH$_4$- N.

  • PDF

Nitrification at Low Concentration of NH4+-N by using Attached Growth in Zeolite Media (제올라이트 여재의 부착성장을 이용한 저농도 NH4+-N의 생물학적 질산화 처리)

  • Kim, Jin-Su;Kang, Min-Koo;Yang, Chang-Hwan;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.561-567
    • /
    • 2017
  • This study focused on estimating the low concentration of $NH_4{^+}-N$ removal by using simultaneous reaction of the adsorption and microbial nitrification with microbe-attached zeolite media. To evaluate the adsorption effect of the zeolite media, the expanded polypropylene (EPP) media which are not able to adsorb $NH_4{^+}-N$ were used as a control media in order to compare the adsorption ability. Each media was used to experiment after aerated 8 hr for attachment of the microbes. The batch experiment shows that nitrification occurred in zeolite media better than EPP media because nitrifiers could consume the relatively enough amount of $NH_4{^+}-N$ adsorbed onto the zeolite media. Compared to the reactor with EPP media, nitrification occurred only in the reactor with zeolite media under continuous operation at the empty bed contact time (EBCT) of 25 min and 3 mg/L of $NH_4{^+}-N$ concentration. As the EBCT of the reactor with zeolite media increased from 10 to 60 min, the nitrification efficiencies increased too. $NH_4{^+}-N$ removal efficiency showed up more than 90% at EBCT 60 min. And the difference in concentration of the total nitrogen between the influent and the effluent was 0.25 mg/L at EBCT 10 min, 0.78 mg/L at EBCT 25 min, 0.59 mg/L at EBCT 40 min and 0.37 mg/L at EBCT 60 min, respectively. This difference was due to between adsorption rate and nitrification rate of $NH_4{^+}-N$, and it was considered that $NH_4{^+}-N$ was adsorbed on the zeolite media by the gap of the concentration.

Influence of N Forms to the Ionic Balance of Tobacco Plants (담배식물의 이온균형(均衡)에 미치는 형태별(形態別) 질소(窒素)의 영향)

  • Lee, Yun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.2
    • /
    • pp.139-145
    • /
    • 1986
  • In order to study the influence of nitrate reduction to ionic balance in tissue of tobacco plant, differneces in amounts of those cations and anions were determined and these balances were compared with contents of organic acids and activities of nitrate reductase, while they were fertilized with different nitrogen sources ($NO_3-N$, $NH_4-N$, $NO_3+NH_4-N$) in water culture. The results of studies are summerized as follows; 1. Total uptake of inorganic cations was the highest in nitrate-fed plants, whereas that of inorganic anions showed the highest level in the plants grown with the mixture ($NO_3+NH_4$). The amounts of inorganic cations and anions were comparable in two treatments containing $NH_4-N$, but in plants treated with nitrate only had much higher level of inorganic cations than others. 2. Deficiency in the amount of inorganic anions in nitrate-fed plants was balanced with organic acids, dominantly with malic acid among them. But another two $NH_4-N$ fed plant sustained equilibrium between inorganic cations and anions. 3. Reduction of nitrate was raised in tissues of nitrate-fed plants. By the results of nitrate reduction, cations maintained equilibrium with nitrate ion were let loose. The replacement of inorganic anions with organic anions could be a compensation process for the loss of uptaken nitrate ions which must be reduced to be incorporated into organic N compounds.

  • PDF

Study on $\textrm{NH}_4\textrm{H}_2\textrm{PO}_4$ in Nutrient Solution using Tap Water during Hydroponic raising of Crisp Lettuce (수돗물을 용수로 사용한 결구상추의 수경육묘시 배양액내 $\textrm{NH}_4\textrm{H}_2\textrm{PO}_4$ 에 관한 연구)

  • 김주희;김혜진;김영식
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.181-187
    • /
    • 1995
  • This study was conducted to investigate the effect of NH$_4$H$_2$PO$_4$ on pH of the nutrient solution using municipal tap water during hydroponic culture of crisp lettuce (Lactuca sativa var. capitata) seedlings. The composition of starter solution was different from that of supplementary solution. The pH in the nutrient solution was suddenly declined and recovered as the supplementary solution was supplied. The pH of nutrient solution was increased with high temperature and, on the contrary, the EC of nutrient solution was decreased. It shows that plant absorbed nutrients more than water in given solution when the temperature and light was high. After supplying supplementary solution in 1st and End experiment, pH was slowly increased to 7 in NH$_4$H$_2$PO$_4$ 0.25me/$\ell$, but maintained 6.4-6.5 in NH$_4$H$_2$PO$_4$ 3me/$\ell$ and 6me/$\ell$. In 3rd experiment, pH was slowly increased from 6.7 to 7.4 in NH$_4$H$_2$PO$_4$ 0.25me/$\ell$, but decreased from 6-6.5 to 5-5.5 in NH$_4$H$_2$PO$_4$ 3me/$\ell$ and 6me/$\ell$. So it is suggested that the concentration between 0.25 me/$\ell$ and 3 me/$\ell$ by concentration base or the amount of NH$_4$H$_2$PO$_4$ between 1me/6 $\ell$ and 7me/6 $\ell$ by total quantity in solution is appropriate for stabilizing pH in the nutrient solution. Also this experiment suggests that hand operated measurements must be cautious due to the change of pH and EC within a 24-hour cycle.

  • PDF

Study on the Ion Exchange Mechanism of Rare Earth Elements in Several Elution Types (I) (희토류원소의 여러가지 용리형태의 이온교환 메카니즘에 관한 연구 (제 1 보))

  • Ki-Won Cha;Sung-Wook Hong
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.232-237
    • /
    • 1989
  • The elution mechanism of rare earth elements in cation exchange resin which was substituted with $NH_4^+,\;Zn^{2+}\;or\;Al^{3+}$ as a retaining ion had been investigated. Rare earths or rare earths-EDTA complex solution was loaded on the top of resin bed and eluted with 0.0269M EDTA solution. When the rare earth-EDTA complex was adsorbed on the $Zn^{2+}\;or\;Al^{3+}$ resin form, retaining ion was complexed with EDTA and liberated rare earths was adsorbed in the resin again. Adsorbed rare earths in resin phase could be eluted by the complexation reaction with EDTA eluent. On $NH_4^+$ resin form, the rare earth-EDTA complex which had negative charge could not adsorbed on the cation exchange resin because the complexation reaction between $NH_4^+$ and EDTA was impossible. So the elution time was much shorter than in $Zn^{2+}\;or\;Al^{3+}$ resin form. When the rare earths solution was loaded on the $Zn^{2+},\;Al^{3+}$ resin form bed, rare earths was adsorbed in the resin and the retaining ion was liberated. Adsorbed rare earths in resin bed was exchanged by EDTA eluent forming rare earths-EDTA complex, and eluted through these processes. On $NH_4^+$ resin form, rare earths loaded was adsorbed by exchange reaction with $NH_4^+$. As the EDTA eluent was added, rare earths was liberated from resin forming negatively charged rare earth-EDTA complex and eluted without any exchange reaction. So the elution time was greatly shortened and there was no metallic ion except rare earths in effluent. When the $Zn^{2+}\;and\;Al^{3+}$ was used as retaining ion, the pH of efflent was decreased seriousely because the $H^+$ liberated from EDTA molecule.

  • PDF