• Title/Summary/Keyword: $NH_3$-SCR reactor

Search Result 25, Processing Time 0.019 seconds

Design and Performance Test of SCR Pilot Plant($1,000Nm^{3}/hr$) ($1,000Nm^{3}/hr$급 SCR Pilot Plant의 설계 및 성능실험)

  • Kim, J.I.;Chang, I.G.;Seon, C.Y.;Kim, J.S.;Chon, M.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.979-984
    • /
    • 2001
  • As a preceding process for developing design technology and establishing operation technology, the design procedure of the SCR(Selective Catalytic Reduction) pilot plant that can handle $1,000Nm^{3}/hr$ of flue gas was reported in this paper. And we also considered several factors that might cause abnormality of the plant in the designing process. The plant was designed and fabricated to test the $DeNO_{x}$ performances in variable operating conditions in the range of $3,000{\sim}36,000hr^{-1}/hr$ in space velocities, $1.67{\sim}6\;m/s$ in linear velocities, $200{\sim}500^{\circ}C$ temperatures, $300{\sim}1,000Nm^{3}/hr$ flow rates, and $0{\sim}1.4:1\;NH_{3}/NO$ ratios. In order to maintain the flow uniformity, the guide vanes and flow straightener were designed and constructed in the plant. The SCR pilot plant can be operated by the automatic control system, which enable to obtain performance data in real time and to set up the operating technology. The catalyst reactor consists of 4 catalyst layers and surface area of each layer can be adjusted to be of small size. Arrangement of catalysts per layer is $3{\times}6$ with the catalyst dimensions of $150{\times}150{\times}500mm(L{\times}W{\times}H)$.

  • PDF

The Effect of Promoters Addition on NOx Removal by $NH_3$ over V$V_2O_5/TiO_2$

  • Lee, Keon-Joo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.29-36
    • /
    • 2002
  • The selective catalytic reduction (SCR) reaction of promoter catalysts was investigated in this study. A pure anatase type of TiO$_2$ was used as support. Activation measurement of prepared catalysts was practiced on a fixed reactor packing by the glass bead after filling up catalysts in 1/4 inch stainless tube. The reaction temperature was measured by K-type thermocouple and catalyst was heated by electric furnace. The standard compositions of the simulated flue gas mixture in this study were as follows: NO 1,780ppm, NH$_3$1,780ppm, $O_2$1% and $N_2$ as balance gas. In this study, gas analyzer was used to measure the outgassing gas. Catalyst bed was handled for 1hr at 45$0^{\circ}C$, and the reactivity of the various catalyst was determined in a wide temperature range. Conversion of NH$_3$/NO ratio and of $O_2$ concentration was practiced at 1,1.5 and 2, respectively. The respective space velocity were as follows . 10,000, 15,000 and 17,000 hr-1. It was found that the maximum conversion temperature range was in a 5$0^{\circ}C$. It was also found toi be very sensitive at space velocity, $O_2$ concentration, and NH$_3$/NO ratio. We also noticed that the maximum conversion temperature of (W, Mo, Sn) -V$_2$O$_{5}$/TiO$_2$ catalysts was broad. Specially WO$_3$-V$_2$O$_{5}$TiO$_2$2 catalyst appeared nearly 100% conversion at not only above 30$0^{\circ}C$ ut also below 25$0^{\circ}C$. At over 30$0^{\circ}C$, NH$_3$ oxidation decreased with decrease of surface excess oxygen. In addition, WO$_3$-V$_2$O$_{5}$TiO$_2$ catalyst did not appear to affect space velocity, $O_2$ concentration, and NH$_3$/NO ratio.ratio.

A Study on Selective Catalytic Reduction(SCR) for the Radioactive Waste Incineration Process (방사성 폐기물 소각공정을 위한 선택적 촉매 환원법 연구)

  • Lee, Han-Soo;Kim, In-Tae;Chung, Hongsuk;Ahn, Do Hee;Kim, Jong-Ho;Yang, Hee-Sung;Hwang, Jae-Young;Kim, Sang-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.670-678
    • /
    • 1996
  • The characterization of catalysts for the selective catalytic reduction(SCR) was investigated to remove NOx discharge from radioactive waste incinerator. The catalyst was prepared by impregnating $V_2O_5$, $MoO_3$, and $SnO_2$ on honeycomb shaped $TiO_2$. The effects of the type of catalysts, reaction temperature, feed composition, and mole ratio of $NH_3/NO$ on the reaction characteristics were evaluated in a laboratory scale reactor. The 10% $V_2O_5/TiO_2$ catalyst showed the highest NO to $N_2$ conversion of 94.4% at $350^{\circ}C$ and the temperature range for higher conversion was broadened by adding thermally stable promoters, $MoO_3$.

  • PDF

$DeNO_{x}$ Performance of Activated Carbon Catalysts Regenerated by Surfactant Solution (계면활성제 수용액에 의해 재생된 활성탄 촉매의 탈질 성능)

  • Park, Hye-Min;Park, Young-Kwon;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.739-744
    • /
    • 2011
  • Activated carbon SCR(CSCR) catalyst that is used to remove $NO_x$ in exhaust gas including boron discharged from the production process of liquid crystal display(LCD) shows deactivation when boron is deposited to block the pores within the catalyst or to cover its active sites. The spent carbon catalyst is regenerated by washing with various surfactants, drying and calcination. For comparison of the physical and chemical properties before and after the regeneration with the variables, type of surfactants and calcination condition, element analysis by ICP, $N_{2}$ adsorption were conducted. $DeNO_{x}$ in SCR with $NH_3$ was carried out in a fixed bed reactor at $120^{\circ}C$. The activated carbon catalyst regenerated through washing with a non-ionic surfactant in $H_{2}O$ at $90^{\circ}C$ and calcination under $N_{2}$ gas at $550^{\circ}C$ shows similar level of surface area and $NO_x$ removal efficiency with those of fresh catalyst.

Simultaneous Removal of $NO_x$ and $SO_2$ through the Combination of Sodium Chlorite Powder and Carbon-based Catalyst at Low Temperature ($NaClO_2(s)$와 탄소 분산형 촉매를 이용한 저온에서의 $NO_x$$SO_2$ 동시 제거)

  • Byun, Young-Chul;Lee, Ki-Man;Koh, Dong-Jun;Shin, Dong-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • NO oxidation is an important prerequisite step to assist the selective catalytic reduction (SCR) at low temperatures ($<200^{\circ}C$). Therefore, we conducted the lab- and bench-scales experiments appling the sodium chlorite powder ($NaClO_2(s)$) for the oxidation of NO to $NO_2$ and the carbon-based catalyst for the reduction of $NO_x$ and $SO_2$; the lab- and bench-scales experiments were conducted in laboratory and iron-ore sintering plant, respectively. In the lab-scale experiment, known concentrations of $NO_x$ (200 ppm), $SO_2$ (75 ppm), $H_2O$ (10%) and $NH_3$ (400 ppm) in 2.6 L/min were introduced into a packed-bed reactor containing $NaClO_2(s)$, then gases produced by the reaction with $NaClO_2(s)$ were fed into the carbon-based catalyst (space velocity = $2,000hr^{-1}$) at $130^{\circ}C$. In the bench-scale experiment, flue gases of $50Nm^3/hr$ containing 120 ppm NO and 150 ppm $SO_2$ were taken out from the duct of iron-ore sintering plant, then introduced into the flow reactor; $NaClO_2(s)$ were injected into the flow reactor using a screw feeder. Gases produced by the reaction with $NaClO_2(s)$ were introduced into the carbon-based catalyst (space velocity = $1,000hr^{-1}$). Results have shown that, in both lab- and bench-scales experiments, NO was oxidized to $NO_2$ by $NaClO_2(s)$. In addition, above 90% of $NO_x$ and $SO_2$ removal were obtained at the carbon-based catalyst. These results lead us to suggest that the combination of $NaClO_2(s)$ with the carbon-based catalyst has the potential to achieve the simultaneous removal of $NO_x$ and $SO_2$ at low temperature ($<200^{\circ}C$).