• Title/Summary/Keyword: $NH_3$ gas

Search Result 804, Processing Time 0.036 seconds

Collection characteristics of wet-type multi-staged impaction system for air pollutants removal of marine diesel engines (박용디젤기관의 대기오염 저감을 위한 습식 다단 임팩션 시스템의 집진특성)

  • YOA, Seok-Jun;KWON, Jun-Hyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.248-256
    • /
    • 2016
  • The main purpose of this paper was to analyze the removal characteristics of gas/particulate phase pollutants for the present system. Experimentally, we performed to estimate the pressure drop and air pollution removal efficiency with physical variables such as stage number, tube velocity, tube diameter, water spray ($NH_4OH$), and so on. It was concluded that the pressure drop was shown below $111mmH_2O$ lower than that of the existing scrubber (centrifugal spray chamber, over 200 mmAq) at inlet velocity 3.46 m/s and 5 stage. The particular removal efficiency of this system was to be significantly higher at 99.8% in comparison with that of the existing scrubber for 5 stage, inlet velocity 3.46 m/s and $NH_4OH$ (aq) 300 mL/min. It was estimated that the removal efficiencies of $SO_2$ and $NO_2$ were 80% and 70% at system inlet velocity 2.07 m/s and $NH_4OH$ (aq) 300 mL/min respectively. Additionally, the present collection system was to be considered as an effective compact system for simultaneous removal of air pollutants (gas/particulate) due to much higher removal efficiency and appropriate pressure drop without a demister.

Influential Factors for NO_X Reduction Performance of Urea-SCR System for an In-use Medium Duty Diesel Engine (중형 운행 경유차용 Urea-SCR 시스템의 아랫첨자 $NO_X$ 저감성능에 미치는 영향인자)

  • Kim, Hong-Suk;Jeong, Young-Il;Song, Myoung-Ho;Lee, Seang-Wock;Park, Hyun-Dae;Hwang, Jae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.154-161
    • /
    • 2009
  • This study is a part of project of urea-SCR system development for an in-use medium duty diesel engine. This study shows the effect of ammonia oxidation catalyst and SCR volume on $NO_X$ reduction performance. When AOC(Ammonia Oxidation Catalyst) is not used, the urea injection should be controlled accurately to prevent $NH_3$ slip. However, it is found that the accurate $NH_3$ slip control is not easy without AOC in real engine operating conditions, because $NH_3$ and $NO_X$ reaction characteristics change with many factors such as exhaust gas temperature and $NH_3$ absorbance on SCR. SCR volume is also one of important design parameters. This study shows that $NO_X$ reduction efficiency increases with increase of SCR volume especially at high space velocity and low exhaust gas temperature conditions. Additionally, this paper shows the emissions of EURO-2 medium duty diesel engine can be improved to the level of EURO-5 with a DPF and urea-SCR system.

Preparation of the Proteus vulgaris Bacterial Electrodes for the Determination of Urea and Their Application (요소 정량을 위한 Proteus vulgaris 박테리아 전극의 개발과 그 응용)

  • Gwon-Shik Ihn;Bong-Weon Kim;Sohn Moo-Jeong;Ihn-Tak Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.323-332
    • /
    • 1988
  • The bacteria containing urease convert each molecule of urea into two molecules of ammonia and one molecule of carbon dioxide gas. Bacterial electrodes have been constructed by immobilizing the Proteus vulgaris on an ammonia and a carbon dioxide gas-sensors, and were investigated for the effects of pH, temperature, buffer solution, bacterial amounts and interferences, and life time. NH3-bacterial electrode based on ammonia gas-sensor had linearity in the range of $7.0{\times}10^{-4}\;-\;3.0{\times}10^{-2}$M urea in pH 7.4, 0.05M phosphate buffer at $25^{\circ}C$ with a slope of 116.7 mV/decade. While $CO_{2-}$bacterial electrode based on carbon dioxide gas-sensor bad linearity in the range of $7.0{\times}10^{-4}\;-\;5. 0{\times}10^{-2}$M urea in pH 7.0, 0.1M phosphate buffer at $30^{\circ}C$with a slope of $45.4{\times}45.7mV/decade$. As the clinical application, urea in urine was determined by these devices and this result was compared with spectrophotometric method. Consequently, these electrodes could be used for the analysis of many samples because of simplicity, rapidity and convenience of the experimental procedure.

  • PDF

The Characteristics of PM2.5 and Acidic Air Pollutants in the Vicinity of Industrial Complexes in Gwangyang (광양산업단지 인근지역 대기 중 미세먼지 (PM2.5)와 산성오염물질 특성)

  • Kang, Byung-Wook;Jeong, Man-Ho;Jeon, Jun-Min;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.16-29
    • /
    • 2011
  • The cyclone/annular denuder system/filter pack sampling system (ADS) was used to collect data set of the acidic air pollutants in the vicinity of industrial complexes in Gwangyang. The data set was collected during sixty different days with 24 hour sampling period from January 8, 2008 through November 12, 2008. The annual mean concentrations of $HNO_3$, $HNO_2$, $SO_2$ and $NH_3$ in the gas phase were 1.12, 1.40, 10.2 and 1.28 ${\mu}g/m^3$, respectively. The annual mean concentrations of $PM_{2.5}$ ($d_p$<2.5 ${\mu}m$), $SO_4^{2-}$, $NO_3^-$, and $NH_4^+$ in the particulate phase were 29.2, 8.25, 3.30 and 3.42${\mu}g/m^3$, respectively. $HNO_3$ and $NH_3$ exhibited higher concentrations during the summer, while $HNO_2$, $PM_{2.5}$, $NO_3^-$ and $NH_4^+$ were higher during the winter. The highest level of $SO_2$ was, unlikely, observed in the summer and $SO_4^{2-}$ was not showed seasonal variation. $SO_4^{2-}$, $NO_3^-$, and $NH_4^+$ accounted for 49~57% of the $PM_{2.5}$ mass. $SO_4^{2-}$ was the most abundant component, which constituted 23~40% of $PM_{2.5}$. High correlations were found among $PM_{2.5}$, $SO_4^{2-}$, $NO_3^-$, and $NH_4^+$.

The Study on Performance Characteristics of Superheating the Suction Vapor in $NH_3$ Refrigeration System ($NH_3$ 냉동장치의 과열도 변화에 의한 성능 특성 연구)

  • 권일욱;하옥남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.756-761
    • /
    • 2004
  • Since the use of CFC and HCFC refrigerants are to be restricted due to the depletion of ozone layer, this experiment applies the NH$_3$ gas to study the performance characteristics from the superheat control for improving the energy efficiency. The experiments are carried out for the condensing pressure of refrigeration system from 14.5 bar to 16.0 bar by 0.5 bar and for superheat temperature from $0^{\circ}C$ to 1$0^{\circ}C$ by 1$^{\circ}C$ at each condensing pressure. As a result of experiment, when the superheat temperature is 1$^{\circ}C$ at each condensing pressure, the refrigeration system has the highest performance.

Direct Synthesis of Dimethyl Ether from Synthesis Gas (합성가스로부터 디메틸에테르 직접 합성)

  • Hahm, Hyun-Sik;Kim, Song-Hyoung;Kang, Young-Gu;Shin, Ki-Seok;Ahn, Sung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.8-14
    • /
    • 2009
  • Dimethyl ether(DME) was synthesized from synthesis gas by a one-step process in which a hybrid catalyst was used. The hybrid catalyst consisted of Cu-ZnO-$Al_2O_3$ for the methanol synthesis reaction and aluminum phosphate or $H_3PO_4$-modified $\gamma$-alumina for the methanol dehydration reaction. The prepared catalysts were characterized by XRD, BET, SEM, FT-IR and $NH_3$-TPD. From the XRD analysis, it was verified that the aluminum phosphate was successfully synthesized. The specific surface areas of the synthesized aluminum phosphates were varied with the ratio of P/Al. The hybrid catalyst in which P/Al ratio of the aluminum phosphate was 1.2 showed the highest CO conversion of 55% and DME selectivity of 70%. There was no remarkable decrease in catalytic activity with the phosphoric acid treatment of $\gamma$-alumina. However, when treated with concentrated phosphoric acid(85%), the catalytic activity and DME selectivity decreased.

  • PDF

Characteristics of Aqueous Ammonia-CO2 reaction at Regeneration Condition of High Temperature and Pressure (고압고온 재생조건에서의 암모니아수-CO2 반응특성)

  • Kim, Yun Hee;Yi, Kwang Bok;Park, Sung Youl;Ko, Chang Hyun;Park, Jong-Ho;Beum, Hee Tae;Han, Myungwan;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.253-258
    • /
    • 2010
  • In the field of the $CO_2$ absorption process using aqueous ammonia, the effects of regeneration pressure and temperature on $CO_2$ absorption performances of the aqueous ammonia were investigated. The absorbents were prepared by dissolving ammonium carbonate solid in water to grant the resulted solution 0.5 $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) and various ammonia concentration (14, 20, 26 and 32 wt%). As-prepared absorbents were regenerated at high pressure and temperature (over $120^{\circ}C$ and 6 bar) before the absorption test. The absorption test was carried out by injecting the simulated gas that contains 12 vol% of $CO_2$ into a bubbling reactor. The introduction of 26 wt% of the ammonia concentration for $CO_2$ absorption test resulted in the higher absorption capacities than other experimental conditions. In particular, when the absorbents with 26 wt% of the ammonia were regenerated at $150^{\circ}C$ and 14 bar, the highest absorption capacity, $45ml\;CO_2/g$, was obtained. According to the analysis of absorbents using acid-base titration, the ammonia loss during the regeneration of the absorbents with a fixed ammonia concentration decreased as the regeneration pressure increased, while it increased as the regeneration temperature increased. In the condition of fixed regeneration pressure and temperature, as expected, the ammonia loss increased as the ammonia concentration increased. The measured $CO_2$ loadings and ammonia concentrations of absorbents were compared to the values calculated by Electrolyte NRTL model in Aspen Plus.

Method for Rapid Determination and Removal of Nitrogen Oxides in Flue Gas (II). Removal of Nitrogen Oxides Using Ammonia (배기가스중 질소산화물의 신속측정법과 그 제거에 관한 연구 (제 2 보). 암모니아에 의한 $NO_x$의제거)

  • Yong Keun Lee;Kee Jung Paeng;Kyu Ja Hwang
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.207-215
    • /
    • 1986
  • A new method was proposed to improve removal of nitrogen oxides $(NO_x)$ in exhaust gas by the reduction method using ammonia. At the relative humidity of 60%, 50 ppm of $NO_x$ was decomposed at the rate of 1% per hour in the reaction chamber. On the other hand, by adding $NH_3$ which was 5 times more concentrated than NOx, the decomposition rate increased to 6% per hour for 50 ppm $NO_x$ and 10% per hour for 20ppm $NO_x$. Within the actual exhausted gases, the decomposition rate of $NO_x$ reached the maximum 15% per hour because of coexisted reducing gases, such as hydrocarbon and carbon monoxide, and excess humidity containing trace metal ions. In the presence of acidic $SO_2$ gas, the decomposition rate of $NO_x$ decreased. The decomposition of $NO_x$ seems to be caused by the mist which is added to the system, and $NH_3$ in the mist which reduces $NO_x$.

  • PDF

Fermentation Characteristics, Tannin Contents and In vitro Ruminal Degradation of Green Tea and Black Tea By-products Ensiled at Different Temperatures

  • Kondo, Makoto;Hirano, Yoshiaki;Kita, Kazumi;Jayanegara, Anuraga;Yokota, Hiro-Omi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.937-945
    • /
    • 2014
  • Green and black tea by-products, obtained from ready-made tea industry, were ensiled at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$. Green tea by-product silage (GTS) and black tea by-product silage (BTS) were opened at 5, 10, 45 days after ensiling. Fermentation characteristics and nutrient composition, including tannins, were monitored and the silages on day 45 were subjected to in vitro ruminal fermentation to assess anti-nutritive effects of tannins using polyethylene glycol (PEG) as a tannin-binding agent. Results showed that the GTS and BTS silages were stable and fermented slightly when ensiled at $10^{\circ}C$. The GTS stored at $20^{\circ}C$ and $30^{\circ}C$ showed rapid pH decline and high acetic acid concentration. The BTS was fermented gradually with moderate change of pH and acid concentration. Acetic acid was the main acid product of fermentation in both GTS and BTS. The contents of total extractable phenolics and total extractable tannins in both silages were unaffected by storage temperatures, but condensed tannins in GTS were less when stored at high temperature. The GTS showed no PEG response on in vitro gas production, and revealed only a small increase by PEG on $NH_3$-N concentration. Storage temperature of GTS did not affect the extent of PEG response to both gas production and $NH_3$-N concentration. On the other hand, addition of PEG on BTS markedly increased both the gas production and $NH_3$-N concentration at any ensiled temperature. It can be concluded that tannins in both GTS and BTS suppressed rumen fermentation, and tannins in GTS did more weakly than that in BTS. Ensiling temperature for both tea by-products did not affect the tannin's activity in the rumen.

Effect of Mixed Treatment of Urea Fertilizer and Zeolite on Nitrous Oxide and Ammonia Emission in Upland Soil

  • Park, Jun-Hong;Park, Sang-Jo;Seo, Young-Jin;Kwon, Oh-Heun;Choi, Seong-Yong;Park, So-Deuk;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.368-373
    • /
    • 2014
  • Ammonia loss from urea significantly hinders efficient use of urea in agriculture. The level of nitrous oxide ($N_2O$) a long-lived greenhouse gas in atmosphere has increased mainly due to anthropogenic source, especially application of nitrogen fertilizers. There are reports in the literature showing that the addition of zeolite to N sources can improve the nitrogen use efficiency. This study was conducted to evaluate nitrous oxide ($N_2O$) and ammonia ($NH_3$) emission by mixed treatment of urea and zeolite in upland crop field. Urea fertilizer and zeolite were applied at different rates to study their effect on $N_2O$ emission during red pepper cultivation in upland soils. The $N_2O$ gas was collected by static closed chamber method and measured by gas chromatography. Ammonia concentration was analyzed by closed-dynamic air flow system method. The total $N_2O$ flux increased in proportion to the level of N application. Emission of $N_2O$ from the field increased from the plots applied with urea-zeolite mixture compared to urea alone. But urea-zeolite mixture treatment reduced about 30% of $NH_3$-N volatilization amounts. These results showed that the application of urea and zeolite mixture had a positive influence on reduction of $NH_3$ volatilization, but led to the increase in $N_2O$ emission in upland soils.