• Title/Summary/Keyword: $NF-{\kappa}B$ and NRF2

Search Result 64, Processing Time 0.025 seconds

Resveratrol attenuates 4-hydroxy-2-hexenal-induced oxidative stress in mouse cortical collecting duct cells

  • Bae, Eun Hui;Joo, Soo Yeon;Ma, Seong Kwon;Lee, JongUn;Kim, Soo Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Resveratrol (RSV) may provide numerous protective effects against chronic inflammatory diseases. Due to local hypoxia and hypertonicity, the renal medulla is subject to extreme oxidative stress, and aldehyde products formed during lipid peroxidation, such as 4-hydroxy-2-hexenal (HHE), might be responsible for tubular injury. This study aimed at investigating the effects of RSV on renal and its signaling mechanisms. While HHE treatment resulted in decreased expression of Sirt1, AQP2, and nuclear factor erythroid 2-related factor 2 (Nrf2), mouse cortical collecting duct cells (M1) cells treated with HHE exhibited increased activation of p38 MAPK, extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and increased expression of NOX4, $p47^{phox}$, Kelch ECH associating protein 1 (Keap1) and COX2. HHE treatment also induced $NF-{\kappa}B$ activation by promoting $I{\kappa}B-{\alpha}$ degradation. Meanwhile, the observed increases in nuclear $NF-{\kappa}B$, NOX4, $p47^{phox}$, and COX2 expression were attenuated by treatment with Bay 117082, N-acetyl-l-cysteine (NAC), or RSV. Our findings indicate that RSV inhibits the expression of inflammatory proteins and the production of reactive oxygen species in M1 cells by inhibiting $NF-{\kappa}B$ activation.

Anti-oxidative and Anti-inflammatory Activities of Decaisnea insignis Ethanol Extract (Decaisnea insignis 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.973-980
    • /
    • 2014
  • This study was conducted to explore new nutraceutical resources from the plant kingdom possessing biological activities. To fulfill this purpose, the anti-oxidative and anti-inflammatory activities of Decaisnea insignis ethanol extract (DIEE) were evaluated. First, DIEE possessed potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl (DPPH), similar to ascorbic acid used as a positive control. Moreover, DIEE inhibited lipopolysaccharide (LPS)- and hydrogen peroxide ($H_2O_2$)-induced reactive oxygen species (ROS) in RAW 264.7 cells. Furthermore, DIEE induced the expression of an anti-oxidative enzyme, heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), in a dose-dependent manner. The modulation of the HO-1 and Nrf2 expressions might be regulated by mitogen-activated protein kinases (MAPKs) and their upstream signaling pathways. On the other hand, DIEE suppressed LPS-induced nitric oxide (NO) formation without cytotoxicity. The inhibition of the NO formation was the result of the downregulation of inducible NO synthase (iNOS) by DIEE. The suppression of NO and iNOS by DIEE might be modulated by their upstream transcription factors, nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), and activator protein 1 (AP-1) pathways. Taken together, these results provide important new insights that D. insignis possesses anti-oxidative and anti-inflammatory activities. Therefore, it might be utilized as a promising material in the field of nutraceuticals.

The anti-oxidative and anti-inflammatory effect of Psoralea corylifolia on Ulcerative Colitis Induced by Dextran Sulfate Sodium in Mice

  • Ahn, Sang Hyun;Kim, Ki Bong
    • The Journal of Korean Medicine
    • /
    • v.37 no.4
    • /
    • pp.10-21
    • /
    • 2016
  • Objectives: This study was to investigate the anti-oxidative and anti-inflammatory effect of Psoralea corylifolia water extract (PE) on ulcerative colitis which was induced by dextran sulfate sodium (DSS) in mice. Methods: Ulcerative colitis was induced by DSS in male BALB/c mice. The mice were divided into 3 groups. The control group (Ctrl) was not induced ulcerative colitis. The pathological group (CE) was induced the colitis. The experimental group (PT) was administered PE after inducing the colitis. The effects of the PE on ulcerative colitis were evaluated by morphological change in the colon tissue and cells, substance P production, activity of tumor necrosis factor $(TNF)-{\alpha}$ and nuclear factor $(NF)-{\kappa}B$, cyclooxygenase (COX)-2 production, and anti-oxidative activity. Results: In the PT group, PE alleviated hemorrhagic erosion in colon mucosa and infiltration of inflammatory cells in lamina propria mucosae. In the colon of the PT group, COX-2 production was inhibited via regulating the activity of $TNF-{\alpha}$ and $NF-{\kappa}B$ p65. PE also had an anti-oxidative effect via activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Conclusions: In this study, we found the utility of treatment with PE and the potential of developing a medicine for ulcerative colitis by applying our results. Further investigations for the anti-inflammatory mechanism of PE may be needed.

Mechanism Underlying the Anti-Inflammatory Action of Piceatannol Induced by Lipopolysaccharide (당지질로 유도한 염증반응에서 Piceatannol의 항염증 기전 연구)

  • Cho, Han-Jin;Shim, Jae-Hoon;So, Hong-Seob;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1226-1234
    • /
    • 2012
  • 3,4,3',5'-Tetrahydroxy-trans-stilbene (piceatannol) is a derivative of resveratrol with a variety of biological activities, including anti-inflammatory, anti-proliferative, and anti-cancer activities. We assessed the mechanisms by which piceatannol inhibits inflammatory responses using lipopolysaccharide (LPS)-treated Raw264.7 murine macrophages. Piceatannol (0~10 ${\mu}mol/L$) decreased LPS-induced release of nitric oxide, tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, IL-$1{\beta}$, and inhibited LPS-induced protein expression of inducible nitric oxide synthase (iNOS). Activation of nuclear factor-kappaB (NF-${\kappa}B$), activator protein (AP)-1, and signal transducer and activator of transcription 3 (STAT3) are crucial steps during an inflammatory response. Piceatannol prevented LPS-induced degradation of inhibitor of ${\kappa}B$ ($I{\kappa}B$), translocation of p65 to the nucleus, and phosphorylation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Additionally, piceatannol inhibited LPS-induced phosphorylation of STAT3 and IL-6-induced translocation of STAT3 to the nucleus. Furthermore, piceatannol increased the protein and mRNA levels of hemeoxygenase (HO)-1, the rate-limiting enzyme of heme catabolism that plays a critical role in mediating antioxidant and anti-inflammatory effects. Piceatannol further induced antioxidant response elements (ARE)-driven luciferase activity in Raw264.7 cells transfected with an ARE-luciferase reporter construct containing the enhancer 2 and minimal promoter region of HO-1. These results suggest that piceatannol exerts anti-inflammatory effects via the down-regulation of iNOS expression and up-regulation of HO-1 expression.

Anti-inflammatory effect of Lonicera caerulea through ATF3 and Nrf2/HO-1 Activation in LPS-stimulated RAW264.7 Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.65-65
    • /
    • 2019
  • In this study, we evaluated the anti-inflammatory effect of extracts of leaves (LCLE) and branches (LCBE) from L. caerulea in LPS-stimulated RAW264.7 cells. Inhibitory effect of LCLE and LCBE against LPS-induced overproduction of NO, iNOS and $IL-1{\beta}$ was higher than LCFE. Furthermore, LCLE and LCBE significantly inhibited the overexpression of COX-2, IL-6 and $TNF-{\alpha}$ in LPS-stimulated RAW264.7 cells. LCLE and LCBE did not inhibited LPS-induced degradation of $I{\kappa}B-{\alpha}$, but blocked the nuclear accumulation of p65. LCLE did not inhibited LPS-induced phosphorylation of ERK1/2 and p38, while LCBE significantly attenuated phosphorylation level of p38. LCLE and LCBE increased HO-1 protein level and decrease of iNOS and $IL-1{\beta}$ expression by LCLE and LCBE was inhibited by HO-1 knockdown. The inhibition of p38 by SB203580 and ROS by NAC blocked HO-1 expression by LCLE and LCBE. LCLE and LCBE increased p38 phosphorylation and the inhibition of ROS by NAC blocked p38 phosphorylation LCLE and LCBE. LCLE and LCBE induced nuclear accumulation of Nrf2, but this was significantly reversed by the inhibition of p38 and ROS. In addition, LCLE and LCBE increased ATF3 expression and decrease of iNOS and $IL-1{\beta}$ expression by LCLE and LCBE was inhibited by ATF3 knockdown. Collectively, LCLE and LCBE inhibited LPS-induced $NF-{\kappa}B$ activation by blocking p65 nuclear accumulation, increased HO-1 expression by ROS/p38/Nrf2 activation, and increased ATF3 expression. Furthermore, LCBE inhibited LPS-induced p38 phosphorylation.

  • PDF

Luteolin and luteolin-7-O-glucoside protect against acute liver injury through regulation of inflammatory mediators and antioxidative enzymes in GalN/LPS-induced hepatitic ICR mice

  • Park, Chung Mu;Song, Young-Sun
    • Nutrition Research and Practice
    • /
    • v.13 no.6
    • /
    • pp.473-479
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Anti-inflammatory and antioxidative activities of luteolin and luteolin-7-O-glucoside were compared in galactosamine (GalN)/lipopolysaccharide (LPS)-induced hepatitic ICR mice. MATERIALS/METHODS: Male ICR mice (6 weeks old) were divided into 4 groups: normal control, GalN/LPS, luteolin, and luteolin-7-O-glucoside groups. The latter two groups were administered luteolin or luteolin-7-O-glucoside (50 mg/kg BW) daily by gavage for 3 weeks after which hepatitis was induced by intraperitoneal injection of GalN and LPS (1 g/kg BW and $10{\mu}g/kg\;BW$, respectively). RESULTS: GalN/LPS produced acute hepatic injury by a sharp increase in serum AST, ALT, and $TNF-{\alpha}$ levels, increases that were ameliorated in the experimental groups. In addition, markedly increased expressions of cyclooxygenase (COX)-2 and its transcription factors, nuclear factor $(NF)-{\kappa}B$ and activator protein (AP)-1, were also significantly attenuated in the experimental groups. Compared to luteolin-7-O-glucoside, luteolin more potently ameliorated the levels of inflammatory mediators. Phase II enzymes levels and NF-E2 p45-related factor (Nrf)-2 activation that were decreased by GalN/LPS were increased by luteolin and luteolin-7-O-glucoside administration. In addition, compared to luteolin, luteolin-7-O-glucoside acted as a more potent inducer of changes in phase II enzymes. Liver histopathology results were consistent with the mediator and enzyme results. CONCLUSION: Luteolin and luteolin-7-O-glucoside protect against GalN/LPS-induced hepatotoxicity through the regulation of inflammatory mediators and phase II enzymes.

Antioxidative and Anti-inflammatory Activities of Ardisia arborescens Ethanol Extract (Ardisia arborescens 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.713-720
    • /
    • 2014
  • In this study, the antioxidative and anti-inflammatory activities of Ardisia arborescens ethanol extract (AAEE) were evaluated using in vitro assays and a cell culture model system. AAEE exhibited potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl (DPPH), similar to ascorbic acid, which was used as a positive control. Moreover, AAEE effectively suppressed lipopolysaccharide (LPS)- and hydrogen peroxide ($H_2O_2$)-induced reactive oxygen species (ROS) in RAW 264.7 cells. Furthermore, AAEE induced the expression of antioxidative enzymes, heme oxygenase 1 (HO-1), and thioredoxin reductase 1 (TrxR1), in addition to their upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), in a dose-dependent manner. The upstream signaling pathways of mitogen-activated protein kinases (MAPKs) might regulate the modulation of HO-1, TrxR1, and Nrf2 expression. On the other hand, AAEE inhibited LPS-induced nitric oxide (NO) formation, without cytotoxicity. Suppression of NO formation was the result of AEEE-induced down-regulation of inducible NO synthase (iNOS). The suppression of NO and iNOS by AAEE might be modulated by their upstream transcription factor, nuclear factor (NF)-${\kappa}B$, and activator protein (AP)-1 pathways. Taken together, these results provide important new insights into the antioxidative and anti-inflammatory activities of A. arborescens. AAAEE might represent a promising material in the field of nutraceuticals.

Anti-Inflammatory and Antioxidative Effects of Gracilaria textorii Ethanol Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (사람 치은섬유모세포에서 잎꼬시래기 에탄올 추출물의 항염증 및 항산화 효과)

  • Park, Chungmu;Yoon, Hyunseo
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.4
    • /
    • pp.61-69
    • /
    • 2019
  • Purpose : Human gingival fibroblast cell is one of the the main cell types in periodontal tissue, which they can show anti-inflammatory activity through the production of numerous lines of inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukins. Porphyromonas gingivalis, one of the oral pathogens, has reported to play a critical role in the development of periodontal diseases. This study aimed to investigate anti-inflammatory and antioxidative activities of Gracilaria textorii ethanol extract (GTEE) in P. gingivalis derived lipopolysaccharide (LPS-PG) stimulated human gingival fibroblast (HGF)-1 cell line. Methods : In order to analyze anti-inflammatory and antioxidative activities of GTEE in HGF-1 cell line, NOS enzyme activity, expression levels of iNOS, COX-2, NAD(P)H quinone dehydrogenase (NQO)1 and their transcription factors were estimated by Griess reaction and western hybridization. Results : LPS-PG induced overexpression of iNOS and COX-2, which was significantly attenuated by GTEE treatment in a dose-dependent manner without any cytotoxicity. In addition, intracellular NOS activity was in accordance with the result of iNOS expression. Due to important role in the regulation of inflammatory responses, phosphorylated status of p65 and c-jun, each subunit of nuclear factor (NF)-κB and activator protein (AP)-1, was also dose-dependently ameliorated by GTEE treatment. One of phase II enzymes, NQO1, and its transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), were analyzed since elevated phase II enzyme expression inhibited inflammatory response, which was significantly elevated by GTEE treatment in HGF-1 cell line. Conclusion : In conclusion, GTEE mitigated LPS-PG-stimulated inflammatory responses by attenuating NF-κB and AP-1 activation as well as accelerating NQO1 and Nrf2 expression in HGF-1 cell line. These results indicate that GTEE might be utilized a promising strategy for potential anti-inflammatory agent in periodontal diseases.

Anti-inflammatory Effect of an Ethyl Acetate Fraction from Myagropsis yendoi on Lipopolysaccharides-stimulated RAW 264.7 Cells (LPS로 유도된 RAW 264.7 대식세포에 대한 애기외톨개 모자반(Myagropsis yendoi) 에틸아세테이트 분획물의 항염증 효과)

  • Kim, Bowoon;Kim, Jae-Il;Kim, Hyeung-Rak;Byun, Dae-Seok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.527-536
    • /
    • 2014
  • An ethanolic extract from Myagropsis yendoi was fractionated using several solvents. Among these, an ethyl acetate fraction (Myagropsis yendoi ethyl acetate fraction: MYE) showed the highest anti-inflammatory activity based on inhibition of lipopolysaccharides (LPS)-induced nitric oxide (NO) production in RAW 264.7 cells. We thus investigated the molecular mechanisms underlying MYE's inhibitory effects. Pretreatment of cells with up to $30{\mu}g/mL$ of MYE significantly inhibited NO production and inducible nitric oxide synthase expression in a dose-dependent manner (P<0.05). Similarly, MYE markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$, as well as their mRNA levels. While the nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) was strongly suppressed by MYE, the activation of a nuclear factor erythroid 2-related factor (Nrf2) was increased. Moreover, MYE significantly reduced the phosphorylation of JNK, p38 MAPK, and phosphatidylinositol 3-kinase/Akt in LPS-stimulated cells. These results indicate that MYE contains anti-inflammatory compounds, and that it might be used as a dietary supplement for the prevention of inflammatory diseases.

Anti-oxidant and Anti-inflammatory Effects of Chulbu-tang (출부탕(朮附湯) 추출물의 항산화 및 항염증에 대한 효과)

  • Hyeong, Kyun;Won, Je-Hoon;Woo, Chang-Hoon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.3
    • /
    • pp.71-87
    • /
    • 2020
  • Objectives Even though the various alternative herbal medicine has applied for osteoarthritis (OA) treatment, its scientific proof remains uncertain. The aim of the present study evaluates the effects of Chulbu-tang on inflammatory responses in a monosodium iodoacetate (MIA)-induced osteoarthritis rat model. Methods OA rat model was established by MIA injection in intra-joint of rats. 7 days after, OA rats except OA control rats were administrated Chulbu-tang (100 or 200 mg/kg) or Indomathacin (5 mg/kg) once a day for 14 days. The weight-bearing ability of hind paws were measured when group isolation 0, 7, and 14 days. Western blotting was performed to examine the knockdown/overexpressing efficiency of Chulbu-tang. In addition, cartilage destruction was measured histologically. Results Chulbu-tang treatment significantly reduced the protein expressions of inflammatory mediators such as inducible nitric oxide synthase and cyclooxygenase 2, and inhibited inflammatory cytokines including tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6 through nuclear factor-kappa B (NF-κB) inactivation. Moreover, anti-oxidant enzymes such as superoxide dismutase and glutathione peroxidase-1/2 through nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway significantly increased. Our findings indicate that Chulbu-tang has the potential therapeutic effect on OA through inhibiting the inflammatory responses via inactivating NF-κB signaling pathway. In addition, upregulation of Nrf2 led to anti-oxidant effects. Conclusions Taken together, Chulbu-tang is believed to have antioxidant, anti-inflammatory effects, and cartilage protection for arthritis-causing rats.