• Title/Summary/Keyword: $Mo_2C$

Search Result 2,183, Processing Time 0.026 seconds

Untersuchungen zur Kohlenstoffloslichkeit in Molybdan und Molybdan-Va-Metall-Legierungen

  • Klaus Schulze;Kim, Hyung-Jin;Hermann Jehn
    • Journal of Surface Science and Engineering
    • /
    • v.16 no.3
    • /
    • pp.108-123
    • /
    • 1983
  • 순수 Mo와 Mo-Nb, Mo-Ta($\leq$10 at% Nb. Ta)합금을 1,500-2,06$0^{\circ}C$ 범위에서 탄소의 고용도를 연구하였다. 특수한 침탄방법으로 C2H2를 시편에 침탄한후 열처리하여 부분적으로 석출하거나 완전석출에 관계없는 화학적 분석방법으로 행하였다. 순수 Mo에서 최대탄소 고용도는 logCCmax = 7.02-9,490/T이다. Nb, Ta를 미량첨가하여 탄소의 최대 고용도는 Arrhenius 식을 적용할 수 없다. Nb-, Ta- 농도와 온도에 따라 Mo2C와 Nb-,Ta-를 함유한 여러 가지 탄화물상을 만들거나 $\alpha$고용체와 Mo가 포함된 NbC, TaC와 평형상태를 나타나기 때문이다. 실험온도 범위에서 Nb, Ta를 첨가량을 증가하면 탄화물 내부에 NbC, TaC로 석출된다. 고온에 용해된 a-고용체는 150-200 oK/Min으로 냉각하면 석출물은 결정입계나 결정내부에 나타난다. 순수 Mo에 Nb, Ta를 첨가하여도 경도, 파괴실험에서와 같이 인장강도는 크게 증가하지 않는다.

  • PDF

New Hypothesis "Exhaustion of Diffusion-Contributable Vacancies in Core/Rim Structure"

  • Hayshi, Koji;Yanaba, Yutaka
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.8-8
    • /
    • 2002
  • TiC core/(Ti,Mo)C rim structure in TiC-$Mo_2C$-Ni base cermet which is generally prepared by sintering below 145$0^{\circ}C$ had been believed to be generated by the solid diffusion of Mo atoms 1 into TiC grains (D. Moskowitz and M.Humenik, 1r.:1966). Afterward, it was clarified that the c core/rim structure is generated by solution/re-precipitation mechanism : (1) $Mo_2C$ grains and s small TiC grains dissolve into the Ni liquid, (2) the dissolved Mo, Ti and C atoms migrate to the s surface of TiC coarse grains, (3) the Mo, Ti and C precipitate on the surface of TiC coarse g grains and form (Ti,Mo)C solid solution rim, and (4) the Ostwald ripening (grain growth by s solution/re-precipitation mechanism) of TiC-core/(Ti,Mo)-rim grains continues, and thus the w width of (Ti,Mo)C rim (at the same time, the grain size) increases with sintering time, etc. ( (H.Suzuki, K.Hayashi and O.Terada: 1973). The TiC-core was found not to disappear even by s sintering at 190$0^{\circ}C$ (ibid.: 1974) Recently, FeSi core/$Fe_2Si_5$-rim structure in Fe-66.7at%Si thermoelectric aIloy was found to also h hardly shrink and disappear by long heating at an appropriate temperature (1999: M.Tajima and K K.hayashD. Then, the authors considered its cause, and clarified experimentaIly that the disappearance of FeSi-core/$Fe_2Ski_5$-rim structure could be attributed to the exhaustion of diffusion-contributable vacancies in core/rim structure (N.Taniguchi and K.Hayashi:2001). At p present, the authors and my coworker are investigating whether the non-disappearance of TiC c core can be explained also from the new hypothesis "Exhaustion of diffusion-contributable v vacancies in corelrim structure".ure".uot;.

  • PDF

Solidification Behavior of 3%C-5%Mo-5%W-10%(Cr or V) White Cast Irons (3%C-5%Mo-5%W-10%(Cr or V) 백주철의 응고거동에 관현 연구)

  • Ryu, Seong-Gon
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.144-147
    • /
    • 2000
  • 10%C-5%Mo-5%W-10%Cr 및 10%C-5%Mo-5%W-10%V 백주철의 응고거동을 열분석을 통하여 연구하였다. 15Kg 용량의 고주파 유도옹해로에 선철, 고철, Fe-Mo, Fe-W, Fe-Cr, Fe-V 등을 장입시켜 용해시킨 후 슬래그를 제거시키고 $1550^{\circ}C$에서 Y블럭의 펩 주형에 주입하였다. 응고거동을 조사하기 위하여 50g을 Y블럭에서 채취한 뒤 알루미나 도가니에 넣어 재용해시킨 후 1$0^{\circ}C$/min의 냉각속도로 냉각시키면서 여섯 종류의 다른 온도에서 도중에 급냉시켜 응고조직을 광학현미경으로 관찰하였다. 10%C-5%Mo-5%W-10%Cr 백주철의 경우 초정 오스테나이트, 오스테나이트와 M(sub)7C(sob)3의 공정, 오스테나이트와 M(sub)6C의 공정으로, 10%C-5%Mo-5%W-10%V 백주철의 경우 초정 MC, 오스테나이트와 MC의 공정, 오스테나이트와 M(sub)2C의 공정으로 각각 순차적으로 정출하였다. 정출하였다.

  • PDF

Magnetoresistance Properties of Spin Valves Using MoN Underlayer (MoN 하지층을 이용한 스핀밸브의 자기저항 특성)

  • Kim, Ji-Won;Jo, Soon-Chul;Kim, Sang-Yoon;Ko, Hoon;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.240-244
    • /
    • 2006
  • In this paper, magnetic properties and annealing behavior of spin valve structures using Mo(MoN) layers as underlayers were studied varying the thickness of the underlayers. The spin valve structure was consisted of Si substrate/$SiO_2(2,000{\AA})/Mo(MoN)(t{\AA})/NiFe(21\;{\AA})/CoFe(28\;{\AA})/Cu(22\;{\AA})/CoFe(18\;{\AA})/IrMn(65\;{\AA})/Ta(25\;{\AA})$. Also, MoN films were deposited on Si substrates and their thermal annealing behavior was analyzed. The resistivity of the MoN film increased as the $N_2$ gas flow rate was increased. After annealing at $600^{\circ}C$, XRD results did not show peaks of silicides. XPS results indicated MoN film deposited with 5 sccm of $N_2$ gas flow rate was more stable than the film deposited with 1 sccm of $N_2$ gas flow rate. The variations of MR ratio and magnetic exchange coupling fold were small for the spin valve structures using Mo(MoN) underlayers up to thickness of45 ${\AA}$. MR ratio of spin valves using MoN underlayers deposited with various $N_2$ gas flow rate was about 7.0% at RT and increased to about 7.5% after annealing at $220^{\circ}C$. Upon annealing at $300^{\circ}C$, the MR ratio decreased to about 3.5%. Variation of $N_2$ gas flow rate up to 5 sccm did not change the MR ratio and $H_{ex}$ appreciably.

Effect of MoO3 Morphological Change over Hydrogen Spillover Kinetics (MoO3 Morphology 변화가 수소 Spillover에 미치는 영향)

  • Kim, Jin Gul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1109-1113
    • /
    • 1999
  • sothemal reduction at $50^{\circ}C$ using $Pt/MoO_3$ or $Pt/MoO_3/SiO_2$ made by dry impregnation or physical mixture of $Pt^{\circ}$ and $MoO_3$ demonstrated that the $H_2$ uptake vis $H_2$ spillover from Pt into $MoO_3$ was enhanced as calcination temperature was increased. Surface area of exposed Pt crystallites measured by CO chemisorption was decreased with higher calcination temperature. In addition, TEM showed that $MoO_x$ overlayers were formed on Pt crystallites after calcination at $400^{\circ}C$. Consequentially, it was found that this increased active contact sites between Pt and $MoO_3$ due to surface morphological change was one of the dominant factors for this increased $H_2$uptake via $H_2$ spillover from Pt crystallites into $MoO_3$.

  • PDF

Thermal Properties of $Sm_{2}(MoO_{4})_{3}$ Single Crystal ($Sm_{2}(MoO_{4})_{3}$ 단결정의 열적특성)

  • Son, Jong-Yoon;Kim, Jae-Hyung;Kim, Joung-Bae;Lee, Kwang-Sei;Nam, Sang-Hee;Lee, Chan-Ku;Lee, Su-Dae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.94-97
    • /
    • 2002
  • Phase transitions of the $Sm_{2}(MoO_{4})_{3}$ single crystal were studied through thermal analysis, x-ray methods and SEM/EDS. $Sm_{2}(MoO_{4})_{3}$ undergoes the ferroelastic and ferroelectric phase transition at $198^{\circ}C$. With increasing temperature, the second phase transition occurs at $928^{\circ}C$. From TG analysis, the mass loss of $Sm_{2}(MoO_{4})_{3}$ exhibits an anomalous behavior at about $650^{\circ}C$ and the curves increased monotonically to $1132^{\circ}C$. SEM and EDS show that the escape of ${MoO_{4}^{2-}$ tetrahedra from the lattice of $Sm_{2}(MoO_{4})_{3}$ increase above $928^{\circ}C$, so $Sm_{2}(MoO_{4})_{3}$ has a very rough surface and internal cracks.

  • PDF

Formation of Mo(NAr)(PMe₃)₂Cl₃and Mo₂(PMe₃)₄Cl₄from Reduction of Mo(NAr)₂Cl₂(DME) with Mg in the Presence of PMe₃[Ar=2,6-diisopropylphenyl]

  • 정건수;박병규;Lee, Soon W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.213-217
    • /
    • 1997
  • Magnesium reduction of Mo(N-C6H3-2,6-i-Pr2)2Cl2(DME) in the presence of trimethylphosphine led to a mixture of Mo(N-C6H3-2,6-i-Pr2)(PMe3)2Cl3, 1, and Mo2(PMe3)4Cl4, 2. In solution 1 is slowly air-oxidized to Mo(N-2,6-i-Pr2-C6H3)(OPMe3)(PMe3)Cl3, 3. 1 is chemically inert to carbon nucleophiles (ZnMe2, ZnEt2, AlMe3, AlEt3, LiCp, NaCp, TlCp, NaCp*, MeMgBr, EtMgBr), oxygen nucleophiles (LiOEt, LiO-i-Pr, LiOPh, LiOSPh), and hydrides (LiBEt3H, LiBEt3D). Crystal data for 1: orthorhombic space group P212121, a=11.312(3) Å, b=11.908(3) Å, c=19.381(6) Å, Z=4, R(wR2)=0.0463 (0.1067). Crystal data for 2: monoclinic space group Cc, a=18.384(3) Å, b=9.181(2) Å, c=19.118(3) Å, b=124.98(1)°, Z=4, R(wR2)=0.0228 (0.0568). Crystal data for 3: orthorhombic space group P212121, a=11.464(1) Å, b=14.081(2) Å, c=16.614(3) Å, Z=4, R(wR2)=0.0394 (0.0923).

Kinetic Studies on the Oxidation of Oxalate Complex of Oxomolybdenum (V) of Hydrogen Chromate Ion (수소크롬산 (VI) 이온에 의한 몰리브덴 (V) 의 옥살산착물의 산화반응)

  • Chang-Yong Kwon;Chang-Su Kim
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.231-236
    • /
    • 1986
  • Oxidation of $[Mo_2O_4(C_2O_4)_2(OH_2)_2]^{2-}$ with hydrogen chromate yields the molybdenum (VI) complex, $[Mo_2O_4(C_2O_4)_2(OH_2)_2]^{2-}$. Stoichiometry for the reaction of $[Mo_2O_4(C_2O_4)_2(OH_2)_2]^{2-}$ with hydrogen chromate are expressed as ${3Mo_2}^V+2Cr^{VI}\;{\rightleftharpoons}\;{3Mo_2}_{VI}+2Cr^{III}$. Observed rate constants are dependent on $[H+]^2$. The kinetic data are consistent with a mechanism in which three successive single-electron steps convert $Cr^{VI}$to $Cr^{III}$ by way of intermediate Cr^V$ and $Cr^{IV}$. Mechanism of the reaction are presented and discussed.

  • PDF

Synthesis and Characterization of Nb, Mo-doped and Nb/Mo-codoped Monoclinic VO2 Nanoparticles and Their Thin Films by Hydrothermal/Post-Thermal Transformation and Wet-Coating Method

  • Kim, Jongmin;Jung, Young Hee;Kwak, Jun Young;Kim, Yeong Il
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.94-101
    • /
    • 2019
  • Nb, Mo-doped and Nb/Mo-codoped $VO_2(M)$ nanocrystallites with various doping levels were synthesized for the first time by a hydrothermal and post thermal transformation method. The reversible phase transition characteristics of those doped $VO_2(M)$ was comparatively investigated. Nb-doping of $VO_2(M)$ by this method resulted in a very efficient lowering of the transition temperature ($T_c$) with a rate of $-16.7^{\circ}C/at.%$ that is comparable to W-doping, while Mo-doping did not give a serious reduction of $T_c$ with only a rate of $-5.1^{\circ}C/at.%$. Nb/Mo-codoping gave a similar result to Nb-doping without a noticeable difference. The thin films of Nb-doped and Nb/Mo-codoped $VO_2(M)$ with a thickness of ca. 120 nm were prepared by a wet-coating of the nanoparticle-dispersed solutions. Those films showed a good thermochromic modulation of near infrared radiation with 30-35% for Nb-doped $VO_2(M)$ and 37-40% for Nb/Mo-codoped ones. Nb/Mo-codoped $VO_2(M)$ film showed slightly enhanced thermochromic performance compared with Nb-doped $VO_2(M)$ film.

Crystal Structure and Thermal Stability Study on Tetrabutylammonium Hexamolybdate [n-Bu4N]2[Mo6O19](TBAM)

  • Zhao, Pu Su;Zhao, Zhan Ru;Jian, Fang Fang;Lu, Lu De
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.553-558
    • /
    • 2003
  • The crystal structure of $[n-Bu_4N]_2[Mo_6O_{19}]$(TBAM) (n-Bu4N=tetrabutylammonium) has been determined by X-ray crystallography. It crystallizes in the monoclinic system, space group C2/c, with lattice parameters ${\alpha}$=16.314(5), b=17.288(5), c=17.776(4)${\AA}$ ${\beta}$=101.47(3), and Z=4. In $[Mo_6O{19}]^{2-}$ anion, Mo atoms occupy six vertices of octahedron and each Mo atom is coordinated by six oxygen atoms to adopt distorted octahedral coordination geometry. The average bond distance of Mo-Ot (terminal), Mo-Ob (bridged) and Mo-Oc (central) are 1.680 ${\AA}$, 1.931 ${\AA}$ and 2.325 ${\AA}$ respectively. In $[n-Bu_4N]^+$ cation, the N atom possesses a slightly distorted tetrahedral geometry. There are some potential extensive C-H ${\cdots}$ O hydrogen bonds in the lattice, by which connecte molecules and stabilize the crystal structure. Thermogravimetric analysis suggests that thermal decomposition of the title compound includes two transitions and it loses weight at 356.0 and 803.5 $^{\circ}$, respectively, and the residue presumable be $Mo_2O_2$. Accordingly, the title compound has high thermal stability.