• Title/Summary/Keyword: %24MoO_x%24 Films

Search Result 2, Processing Time 0.02 seconds

Formation and conductivity of oriented $LaNiO_3$ thin films on Si and $Al_2O_3$ substrates (Si와 $Al_2O_3$ 기판에 대한 $LaNiO_3$ 박막의 배향성 형성과 도전도)

  • Kim, Dae-Young;Park, Min-Seok;Son, Se-Mo;Lee, Myoung-Kyo;Kim, Kang-Eun;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.799-802
    • /
    • 2003
  • [ $LaNiO_3$ ](LNO) thin films were deposited on various substrates as Si and $Al_2O_3$ by sol-gel process using lanthanum nitrate and nickel acetate. The structure and orientation of the films were characterized by X-ray diffraction. The orientation factors of films on Si(100), Si(111), $SiO_2/Si(100)$ and $Al_2O_3$were 97%, 63%, 73%, and 24% respective. The conductivity was $7.6{\times}10^{-3}{\Omega}{\cdot}cm$ with 10 times coating at Si(100) substrate.

  • PDF

3-D Structured Cu2ZnSn (SxSe1-x)4 (CZTSSe) Thin Film Solar Cells by Mo Pattern using Photolithography (Mo 패턴을 이용한 3-D 구조의 Cu2ZnSn (SxSe1-x)4 (CZTSSe) 박막형 태양전지 제작)

  • Jo, Eunjin;Gang, Myeng Gil;Shin, hyeong ho;Yun, Jae Ho;Moon, Jong-ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.20-24
    • /
    • 2017
  • Recently, three-dimensional (3D) light harvesting structures are highly attracted because of their high light harvesting capacity and charge collection efficiencies. In this study, we have fabricated $Cu_2ZnSn(S_xSe_{1-x})_4$ based 3D thin film solar cells on PR patterned Molybdenum (Mo) substrates using photolithography technique. Specifically, Mo patterns were deposited on PR patterned Mo substrates by sputtering and the thin Cu-Zn-Sn stacked layer was deposited over this Mo patterns by sputtering technique. The stacked Zn-Sn-Cu precursor thin films were sulfo-selenized to form CZTSSe pattern. Finally, CZTSSe absorbers were coated with thin CdS layer using chemical bath deposition and ZnO window layer was deposited over CZTSSe/CdS using DC sputtering technique. Fabricated 3-D solar cells were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) analysis, Field-emission scanning electron microscopy (FE-SEM) to study their structural, compositional and morphological properties, respectively. The 3% efficiency is achieved for this kind of solar cell. Further efforts will be carried out to improve the performance of solar cell through various optimizations.