• Title/Summary/Keyword: $MnO_x$

Search Result 864, Processing Time 0.028 seconds

Fabrication and Electrical Property Analysis of [(Ni0.3Mn0.7)1-xCux]3O4 Thin Films for Microbolometer Applications (마이크로볼로미터용 [(Ni0.3Mn0.7)1-xCux]3O4 박막의 제작 및 전기적 특성 분석)

  • Choi, Yong Ho;Jeong, Young Hun;Yun, Ji Sun;Paik, Jong Hoo;Hong, Youn Woo;Cho, Jeong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.41-46
    • /
    • 2019
  • In order to develop novel thermal imaging materials for microbolometer applications, $[(Ni_{0.3}Mn_{0.7})_{1-x}Cu_x]_3O_4$ ($0.18{\leq}x{\leq}0.26$) thin films were fabricated using metal-organic decomposition. Effects of Cu content on the electrical properties of the annealed films were investigated. Spinel thin films with a thickness of approximately 100 nm were obtained from the $[(Ni_{0.3}Mn_{0.7})_{1-x}Cu_x]_3O_4$ films annealed at $380^{\circ}C$ for five hours. The resistivity (${\rho}$) of the annealed films was analyzed with respect to the small polaron hopping model. Based on the $Mn^{3+}/Mn^{4+}$ ratio values obtained through x-ray photoelectron spectroscopy analysis, the hopping mechanism between $Mn^{3+}$ and $Mn^{4+}$ cations discussed in the proposed study. The effects of $Cu^+$ and $Cu^{2+}$ cations on the hopping mechanism is also discussed. Obtained results indicate that $[(Ni_{0.3}Mn_{0.7})_{1-x}Cu_x]_3O_4$ thin films with low temperature annealing and superior electrical properties (${\rho}{\leq}54.83{\Omega}{\cdot}cm$, temperature coefficient of resistance > -2.62%/K) can be effectively employed in applications involving complementary metal-oxide semiconductor (CMOS) integrated microbolometer devices.

Structural change and electrical conductivity according to Sr content in Cu-doped LSM (La1-xSrxMn0.8Cu0.2O3) (Sr 함량이 Cu-doped LSM(La1-xSrxMn0.8Cu0.2O3)의 구조적변화와 전기전도도에 미치는 영향)

  • Ryu, Ji-Seung;Noh, Tai-Min;Kim, Jin-Seong;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.78-83
    • /
    • 2012
  • The structural change and the electrical conductivity with Sr content in $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_3$ (LSMCu) were studied. $La_{0.8}Sr_{0.2}MnO_3$ (LSM) and $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_3$ ($0.1{\leq}x{\leq}0.4$) were synthesized by EDTA citric complexing process (ECCP). A decrease in the lattice parameters and lattice volumes was observed with increase of Sr content, and these results were attributed to the increasing $Mn^{4+}$ ions and $Cu^{3+}$ ions in B-site. The electrical conductivity measured from $500^{\circ}C$ to $1000^{\circ}C$ was increased with increase of Sr content in the $0.1{\leq}x{\leq}0.3$ composition range, and it was 172.6 S/cm (at $750^{\circ}C$) and 177.7 S/cm (at $950^{\circ}C$, the maximum value) in x = 0.3. The electrical conductivity was decreased in x = 0.4 because of the presence of the second phase in the grain boundaries. The lattice volume was contracted by increase of $Mn^{4+}$ ions and $Cu^{3+}$ ions in B-site according to increase of Sr content and the electrical conductivity was increased with increase of charge carriers which were involved in the hopping mechanism.

Crystallographic and Magnetic Properties of Nickel Substituted Manganese Ferrites Synthesized by Sol-gel Method

  • Chae, Kwang Pyo;Choi, Won Oak;Lee, Jae-Gwang;Kang, Byung-Sub;Choi, Seung Han
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • Nickel substituted manganese ferrites, $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.6$), were fabricated by sol-gel method. The effects of sintering and substitution on their crystallographic and magnetic properties were studied. X-ray diffractometry of $Mn_{0.6}Ni_{0.4}Fe_2O_4$ ferrite sintered above 523 K indicated a spinel structure; particles increased in size with hotter sintering. The M$\ddot{o}$ssbauer spectrum of this ferrite sintered at 523 K could be fitted as a single quadrupole doublet, indicative of a superparamagnetic phase. Sintering at 573 K led to spectrum fitted as the superposition of two Zeeman sextets and a single quadrupole doublet, indicating both ferrimagnetic and paramagnetic phase. Sintering at 673 K and at 773 K led to spectra fitted as two Zeeman sextets due to a ferrimagnetic phase. The saturation magnetization and the coercivity of $Mn_{0.6}Ni_{0.4}Fe_2O_4$ ferrite sintered at 773 K were 53.05 emu/g and 142.08 Oe. In $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.6$) ferrites, sintering of any composition at 773 K led to a single spinel structure. Increased Ni substitution decreased the ferrites' lattice constants and increased their particle sizes. The M$\ddot{o}$ssbauer spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and the octahedral sites of the $Fe^{3+}$ ions. The variations of saturation magnetization and coercivity with changing Ni content could be explained using the changes of particle size.

Irreversibility and Thermoremanent Magnetization in Y0.8Sr0.2MnO3

  • Ismail, Agustina;Yansen, W.;Rajagukguk, R.;Kwon, Y.M.;Kim, J.;Lee, B.W.
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.168-171
    • /
    • 2012
  • Irreversible magnetization between the zero-field-cooled (ZFC) and field-cooled (FC) states in $Y_{1-x}Sr_xMnO_3$ (x=0 and 0.2) was investigated. $YMnO_3$ and $Y_{0.8}Sr_{0.2}MnO_3$ have a hexagonal structure and the lattice parameter a decreases from 7.4408 ${\AA}$ to 7.4327 ${\AA}$ while c increases from 12.2244 ${\AA}$ to 12.2287 ${\AA}$ for $YMnO_3$ and $Y_{0.8}Sr_{0.2}MnO_3$, respectively. An anomaly is observed at around 74 K in ZFC and FC magnetization measurements for $YMnO_3$, whereas in $Y_{0.8}Sr_{0.2}MnO_3$ the ${\sigma}_{ZFC}$ and ${\sigma}_{FC}$ are split at low temperature, indicating glass-like behavior.

A Study on the Coloration of the $Nd_2O_3$ Containing Glass by X-ray Irradiation ($Nd_2O_3$ 함유 유리의 X-선조사에 따른 변색에 관한 연구)

  • 박용원;강원호
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.4
    • /
    • pp.373-381
    • /
    • 1984
  • The coloration of the $Nd_2O_3$ contained $R_2O-BaO-SrO-ZrO_2-SiO_2$ glass added the various amount of $CeO_2$ $MnO_2$, $Fe_2O_3$ and $As_2O_3$ alone or together by the irradiation of X-ray irradiation,. The glasses added $CeO_2$ in proportion to amount were more effective on preventing coloration by X-ray irradiation but the addition of $MnO_2$ produced different color according to the amount of addition. The addition of the $Fe_2O_3$, $TiO_2$ and $As_2O_3$ did not give much effects to the transmission changes of $Nd_2O_3$ contained glass by X-ray irradiation but the glass added $CeO_2$ , $Fe_2O_3$, $TiO_2$ together was most effective to prevent coloration and transmisson changes.

  • PDF

A Study on the Cathodoluminescence and Structure of Thin Film $ZnGa_2O_4:Mn$ Oxide Phosphor (박막형 $ZnGa_2O_4:Mn$ 산화물 형광체의 음극선루미느센스와 구조적 특성에 관한 연구)

  • Kim, Joo-Han;Holloway Paul H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.541-546
    • /
    • 2006
  • In this study we have investigated cathodoluminescence (CL) and structural properties of thin film $ZnGa_2O_4:Mn$ oxide phosphor by using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), photoluminescence (PL), and cathodoluminescence. PL emission peaked at 506 nm was observed from the $ZnGa_2O_4:Mn$ phosphor target and it was attributed to the $^4T_1-^6A_1$ transition in $Mn^{2+}$ ion. The color coordinates of the emission were x = 0.09 and y = 0.67. The $ZnGa_2O_4:Mn$ films showed the excitation spectrum peaked at 294 nm by $Mn^{2+}$ ion absorption. It was found that the higher intensity of CL emission at 505 nm appears to result from the denser and closely-packed structure in $ZnGa_2O_4:Mn$ phosphor films deposited at lower pressures. The CL intensity did not show any systematic dependence on film surface roughness.

Enhanced Performance in a Lithium-ion Battery via the Crystal-aligned LiNi0.6Mn0.2Co0.2O2 and the Relevant Electrochemical Interpretation (결정배향 LiNi0.6Mn0.2Co0.2O2 전극활물질을 통한 리튬이차전지 성능 향상 및 이의 전기화학적 해석)

  • Cham, Kim
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.6
    • /
    • pp.451-458
    • /
    • 2022
  • Through the crystal alignment research based on the magnetic properties of LiNixMnyCo1-(x+y)O2 such as magnetic susceptibility and related anisotropy, a crystal aligned LiNi0.6Mn0.2Co0.2O2 electrode is obtained, in which the (00l) plane is frequently oriented perpendicular to the surface of a current collector. The crystal aligned LiNi0.6Mn0.2Co0.2O2 electrode steadily exhibits low electrode polarization properties during the charge/discharge process in a lithium-ion battery, thus affording an improved capacity compared to a pristine LiNi0.6Mn0.2Co0.2O2 electrode. The aligned LiNi0.6Mn0.2Co0.2O2 electrode may have an appropriate structural nature for fast lithium-ion transport due to the oriented (00l) plane, and thus it contributes to enhancing the battery performance. This enhancement is analyzed in terms of various electrochemical theories and experiment results; thus, it is verified to occur because of the considerably fast lithium-ion transport in the aligned LiNi0.6Mn0.2Co0.2O2 electrode.

Formation of a MnSixOy barrier with Cu-Mn alloy film deposited using PEALD

  • Moon, Dae-Yong;Hwang, Chang-Mook;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.229-229
    • /
    • 2010
  • With the scaling down of ultra large integrated circuits (ULSI) to the sub-50 nm technology node, the need for an ultra-thin, continuous and conformal diffusion barrier and Cu seed layer is increasing. However, diffusion barrier and Cu seed layer formation with a physical vapor deposition (PVD) method has become difficult as the technology node is reduced to 30 nm and beyond. Recent work on self-forming barrier processes using PVD Cu alloys have attracted great attention due to the capability of conformal ultra-thin barrier formation using a simple technique. However, as in the case of the conventional barrier and Cu seed layer, PVD of the Cu alloy seed layer will eventually encounter the difficulty in conformal deposition in narrow line trenches and via holes. Atomic layer deposition (ALD) has been known for its good step coverage and precise thickness control, and is a candidate technique for the formation of a thin conformal barrier layer and Cu seed layer. Conformal Cu-Mn seed layers were deposited by plasma enhanced atomic layer deposition (PEALD) at low temperature ($120^{\circ}C$), and the Mn content in the Cu-Mn alloys were controlled form 0 to approximately 10 atomic percent with various Mn precursor feeding times. Resistivity of the Cu-Mn alloy films decreased by annealing due to out-diffusion of Mn atoms. Out-diffused Mn atoms were segregated to the surface of the film and interface between a Cu-Mn alloy and $SiO_2$, resulting in self-formed $MnO_x$ and $MnSi_xO_y$, respectively. No inter-diffusion was observed between Cu and $SiO_2$ after annealing at $500^{\circ}C$ for 12 h, indicating an excellent diffusion barrier property of the $MnSi_xO_y$. The adhesion between Cu and $SiO_2$ was enhanced by the formation of $MnSi_xO_y$. Continuous and conductive Cu-Mn seed layers were deposited with PEALD into 32 nm $SiO_2$ trench, enabling a low temperature process, and the trench was perfectly filled using electrochemical plating (ECD) under conventional conditions. Thus, it is the resultant self-forming barrier process with PEALD Cu-Mn alloy film as a seed layer for plating Cu that has further potential to meet the requirement of the smaller than 30 nm node.

  • PDF

Crystal Structure of an Acetylene Sorption Complex of Dehydrated Fully Mn(II)-Exchanged Zeolite X

  • 배명남;김양
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1095-1099
    • /
    • 1998
  • The crystal structure of an acetylene sorption complex of dehydrated fully Mn(Ⅱ)-exchanged zeolite X, Mn46Si100Al92O384·30C2H2 (a=24.705(3) Å) has been determined by single-crystal X-ray diffraction techniques. The structure was solved and refined in the cubic space group Fd3 at 21(l) ℃. The complex was prepared by dehydration at 380 ℃ and 2 x 10-6 Torr for 2 days, followed by exposure to 300 Torr of acetylene gas for 2 h at 24 ℃. The structure was refined to the final error indices, R1=0.060 and R2=0.054 with 383 reflections for which I > 3σ(Ⅰ). In the structure, Mn2+ ions are located at two different crystallographic sites; sixteen Mn2+ ions at site I are located at the centers of the double six rings and thirty Mn2+ ions are found at site Ⅱ in the supercage, respectively. Each of these latter Mn2+ ions is recessed ca. 0.385(2) Å into the supercage from its three-oxygen plane. Thirty acetylene molecules are sorbed per unit cell. Each Mn2+ ion at site Ⅱ lies on a threefold axis in the supercage of the unit cell, close to three equivalent trigonally arranged zeolite framework oxygen atoms (Mn(Ⅱ)-O=2.135(9) Å) and symmetrically to both carbon atoms of a C2H2 molecules. At these latter distances, the Mn(Ⅱ)-C interactions are weak (Mn(Ⅱ)-C=2.70(5) Å), probably resulting from electrostatic attractions between the divalent cations and the polarizable π-electron density of the acetylene molecules.

Mn 도핑 농도에 따른 ZnO 나노 입자의 구조와 자성 특성 연구

  • Kim, Jeong-Hun;Kim, Seon-Ho;Jeon, Gwang-Deok;Lee, Ji-Eun;Lee, Hui-Su;Jeong, Jin-Cheol;Choe, Pu-Reum;Eo, Jin-Seok;Park, Jun-Ho;Lee, Ji-Un;Choe, Seung-Yeon;Choe, Gyu-Hyeon;Baek, Min;Yang, U-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.604-604
    • /
    • 2013
  • 차세대 반도체 분야인 스핀트로닉스 소자의 필수적인 물질인 강자성-반도체 하이브리드 물질인 Dilute magnetic semiconductor (DMS)에 관한 연구가 최근 많은 관심을 가지고 있다. 그중에서 넓은 에너지 밴드 갭 에너지(3.37 eV)를 가지고 있고 상온에서 엑시톤 결합 에너지가 ~60 mV로 광전자 소자, 전계 디스플레이 에 응용이 가능한 물질인 ZnO는 최근에 전이금속을 도핑하여 상온에서 강자성 특성을 나타내어 활발한 연구가 이루어지고 있다. 그러나, 이 물질에 대한 특성과 자성의 원인 규명에 관한 연구는 논란이 되고 있다. 본 연구에서는 Mn이 도핑된 ZnO 나노 입자를 만들고, Mn 물질의 도핑 농도에 따른 ZnO 나노 입자의 구조, 크기 및 자기 구조를 측정하여 구조와 자성의 상관관계에 관한 연구하였다. ZnxMn1-xO 나노 입자는 화학적 졸-겔(sol-gel) 방법을 이용하여 준비하였다. ZnxMn1-xO 나노 입자의 크기 및 격자 구조적 특징은 XRD (X-ray diffraction)와 TEM (Transmission Electron Microscope), SEM (Scanning Electron Microscope), SANS (Small Angle Neutron Scattering)를 이용하여 측정하였고 물질의 자기적 특징은 SQUID를 이용하여 조사하였다. Mn 도핑이 증가함에 따라 격자간격이 커지고 나노 입자의 크기는 감소하였으며, Zn와 Mn의 성장 시, 비율이 9:1의 경우에 상온에서 강자성 특성이 나타남을 보았다. 그 이상의 Mn 도핑 비율에서는 상자성 특성이 나타남을 보았다. 본 연구를 통하여 스핀트로닉스 소자 응용을 위한 ZnO 나노 입자에 최적의 Mn 도핑 농도를 제시하고 나노 입자의 자기 특성 형성의 원인 및 모델을 제시하였다.

  • PDF