• Title/Summary/Keyword: $MnO_x$

Search Result 864, Processing Time 0.027 seconds

Preparation and Characterization of Zn2SiO4:Mn2+ Green Phosphor with Solid State Reaction (고상법에 의한 Zn2SiO4:Mn2+녹색 형광체의 제조와 특성에 관한 연구)

  • Yoo, Hyeon-Hee;Nersisyan, Hayk;Won, Hyung-Il;Won, Chang-Whan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.352-356
    • /
    • 2011
  • [ $Zn_{2(1-x)}Mn_xSiO_4$ ]$0.07{\leq}x{\leq}0.15$) green phosphor was prepared by solid state reaction. The first heating was at $900^{\circ}C-1250^{\circ}C$ in air for 3 hours and the second heating was at $900^{\circ}C$ in $N_2/H_2$(95%/5%) for 2 hours. The size effect of $SiO_2$ in forming $Zn_2SiO_4$ was investigated. The temperature for obtaining single phase $Zn_2SiO_4$ was lowered from $1100^{\circ}C$ to $1000^{\circ}C$ by decreasing the $SiO_2$ particle size from micro size to submicro size. The effect of the activators for the Photoluminescence (PL) intensity of $Zn_2SiO_4:Mn^{2+}$ was also investigated. The PL intensity properties of the phosphors were investigated under vacuum ultraviolet excitation (147 nm). The emission spectrum peak was between 520 nm and 530 nm, which was involved in green emission area. $MnCl_2{\cdot}4H_2O$, the activator source, was more effective in providing high emission intensity than $MnCO_3$. The optimum conditions for the best optical properties of $Zn_2SiO_4:Mn^{2+}$ were at x = 0.11 and $1100^{\circ}C$. In these conditions, the phosphor particle shape was well dispersed spherical and its size was 200 nm.

Dielectric and Piezoelectric Properties of Low Temperature Sintering PMW-PNN-PZT Substituted with CeMnO3 (CeMnO3가 치환된 저온소결 PMW-PNN-PZT 세라믹스의 유전 및 압전 특성)

  • Kim, Yong-Jin;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.160-164
    • /
    • 2015
  • In this study, $(1-x)Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_{0.09}(Zr_{0.5}Ti_{0.5})_{0.88}O_3+xCeMnO_3$ (x= 0~0.02) ceramics were prepared by Columbite precursor method. The phase structure, ferroelectric and piezoelectric properties were systematically investigated. It was found that PMW-PNN-PZT possessed superior electrical properties due to its composition close to the MPB (morphotropic phase boundary). Coercive electric field of 10.05 [kV/cm] and density of 7.88 [$g/cm^3$] were obtained when the substitution amount of $CeMnO_3$ is x=0.02. In contrast, specimens with x=0.01 showed the mechanical quality factor($Q_m$) of 1,091 and the electromechanical coupling factor($k_p$) of 0.613.

Magnetic Properties of Mn and La-Mn Substituted Strontium Ferrite (Mn 및 La-Mn 치환 Sr 페라이트의 자기적 특성 변화)

  • 장세동;김종오;김종희
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.6
    • /
    • pp.267-271
    • /
    • 2001
  • These experiments were carried out to examine the effects of elemental substitution of Mn and La-Mn on Sr-ferrite. The calcined properties for the Mn and La-Mn substitution were examined, and the sintered magnetic properties were compared with the stoichiometric condition. The magnetic properties of calcined SrM and (La-Mn)$_{0.3}$-SrM composition were as follows, respectively; M$_{s}$ : 61.06 emu/g, $_{i}$H$_{c}$ : 4.45 kOe and M$_{s}$ : 61.06 emu/g, $_{i}$H$_{c}$ : 4.46 kOe. Also, the sintered ferrite magnets of Mn$_{0.3}$-SrM and [(La-Mn)$_{0.3}$-SrM exhibited a similar properties to the stoichiometric composition but the coercivity of (La-Mn)$_{x}$-SrM was decreased rapidly with x=0.5.

  • PDF

The Effect of Manganese Substituted M-type Hexagonal Ba-ferrite

  • Lee, In-Kyu;Sur, Jung-Chul;Shim, In-Bo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.93-96
    • /
    • 2009
  • The Mn-substituted M-type Ba-ferrite ($BaFe_{12-x}Mn_xO_{19}$; x = 0, 2, 4, 6) powders were prepared by the HTTD (High Temperature Thermal Decomposition) method. The effect of $Mn^{3+}$ Jahn-Teller ions on the magnetic properties has been studied by x-ray diffraction, vibrating sample magnetometry, and $M{\ddot{o}}ssbauer$ spectroscopy. With increasing Mn substitution, the lattice parameter $a_0$ increases while $c_0$ decreases. The magnetocrystalline anisotropy constants ($K_1$) were determined as 2.9, 2.2, 1.8, and, $1.3{\times}10^6\;erg/cm^3$ for x = 0, 2, 4, and 6, respectively, by the LAS method. We have studied the change of cation distribution by $M{\ddot{o}}ssbauer$ spectroscopy which is closely related to $K_1$.

The Structural and Electrochemical Properties of Li[Ni0.6-xBaxCo0.1Mn0.3]O2 (x = 0, 0.01) by Barium Doping (Barium 도핑에 따른 Li[Ni0.6-xBaxCo0.1Mn0.3]O2(x=0, 0.01) 의 구조 분석 및 전기화학적 특성)

  • Jang, Byeong-Chan;Yoo, Gi-Won;Yang, Su-Bin;Min, Song-Gi;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.222-228
    • /
    • 2014
  • Ni-rich system $Li[Ni_{1-x-y}Co_xMn_y]O_2$ of lithium secondary battery cathode material keep a high discharge capacity. However, by the Ni content increases, there is a problem that the electrochemical properties and stability of the structure are reduced. In order to solve these problems, research for positive ion doping is performed. The one of the cathode material, barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01), was synthesized by the precursor, $Ni_{0.6}Co_{0.1}Mn_{0.3}(OH)_2$, from the co-precipitation method. The barium doped materials have studied the structural and electrochemical properties. The analysis of structural properties, results of X-ray diffraction analysis, and those results confirmed the change of the lattice from the binding energy in the structure by barium doping. Increased stability of the layered structure was observed by $I_{(006)}+I_{(102)}/I_{(101)}$(R-factor) ratio decrease. we expected that the electrochemical characteristics are improved. 23 mAh/g discharge capacity of barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01) electrode is higher than discharge capacity of $Li[Ni_{0.6}Co_{0.1}Mn_{0.3}]O_2$ due to decrease overvoltage. And, through the structural stability was confirmed that improved the cycle characteristics. We caused a reduction in charge transfer resistance between the electrolyte and the electrode was confirmed that the C-rate characteristics are improved.

Preparation and Photoluminescence Properties of the ZnGa₂O₄: Mn Phosphor by Polymerized Complex Precursor

  • 조두환;정하균;석상일;박도순
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.608-612
    • /
    • 1997
  • The preparation and photoluminescence properties of $ZnGa_2O_4$ : Mn phosphor are presented. Under 254 nm excitation $Zn_1-_xMn_xGa_2O_4$ exhibits the green emission band at 506 nm wavelength and maximum intensity where x=0.005. The manganese activated $ZnGa_2O_4$ phosphor prepared by the polymerized complex method shows a remarkable increase in the emission intensity and is smaller particle size than that prepared by conventional method. Also, electron paramagnetic resonance study on $ZnGa_2O_4$ : Mn powders indicates that the increase in emission intensity after firing treatment in mild hydrogen reducing atmosphere is due to the conversion of the higher valent manganese to $Mn^{2+}$.

Parallel Computation for Extended Edit Distances Using the Shared Memory on GPU (GPU의 공유메모리를 활용한 확장편집거리 병렬계산)

  • Kim, Youngho;Na, Joong Chae;Sim, Jeong Seop
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.7
    • /
    • pp.213-218
    • /
    • 2015
  • Given two strings X and Y (|X|=m, |Y|=n) over an alphabet ${\Sigma}$, the extended edit distance between X and Y can be computed using dynamic programming in O(mn) time and space. Recently, a parallel algorithm that takes O(m+n) time and O(mn) space using m threads to compute the extended edit distance between X and Y was presented. In this paper, we present an improved parallel algorithm using the shared memory on GPU. The experimental results show that our parallel algorithm runs about 19~25 times faster than the previous parallel algorithm.

Photoluminescent Properties of $\textrm{Zn}_{2}\textrm{SiO}_{4}$: Mn Green Phosphors doped with Ga (Ga 도핑된 $\textrm{Zn}_{2}\textrm{SiO}_{4}$: Mn 녹색 형광체의 발광특성)

  • Park, Eung-Seok;Jang, Ho-Jeong;Jo, Tae-Hwan
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.860-864
    • /
    • 1998
  • We investigated the photoluminescence and the crystalline properties with Ga doping concentrations (0-12 mol%) in $\textrm{Zn}_{1.98}\textrm{Mn}_{0.02}\textrm{SiO}_{4}$ green phosphors prepared by the solid state reaction. The photoluminescence was improved by a doping of Ga element in $\textrm{Zn}_{1.98}\textrm{Mn}_{0.02}(\textrm{Si_{1-x}\textrm{Ga}_{x})\textrm{O}_{4}$ phosphors which showed the highest emission intensity and good color purity in the doping concentration of x=0.08. The emission intensity of $\textrm{Zn}_{1.98}\textrm{Mn}_{0.02}(\textrm{Si_{1-x}\textrm{Ga}_{x})\textrm{O}_{4}$(x= 0.08) phosphors was increased to 7 times with increasing the sintering temperatures from $1100^{\circ}C$ to $1400^{\circ}C$, showing the improved crystalline quality. The decay time was not affected by Ga doping concentrations with constant values around 24ms. It was found from SEM and PSA analyses that the phosphors were composed of a large number of small grains around 1-3$10\mu\textrm{m}$ with a small amounts of agglomerated particles above $10\mu\textrm{m}$.

  • PDF

The Physical Properties of Mn-Ferrite According to the Variation of Fe-Mn Composition Ratio (철-망간 화합비 변화에 따르는 망간 페라이트의 물성)

  • Kim, Yu-Sang;Hwang, Yong-Gil
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.126-132
    • /
    • 1992
  • Experiment has been performed to investigate the thermal and magnetic properties of Mn-ferrite by electrolysis. Using the 0.2%C mild steel as soluble anode and SUS 304 stainless steel as cathode, Mn-ferrite could be made from the sulfuric acid leaching of the wasted manganese dry cell and $MnSO_4$reagent by electrolysis. As the result of X-ray diffraction, thermal analysis and magnetic measurement, Mn-ferrite was the spinel type in $Mn_{x}Fe_{3-x}O_4$ (X=1), the weight loss rate of $Mn_{x}Fe_{3-x}O_4$ were linearly increased up to the $200^{\circ}C$. Ms, Mr and Hc values were decreased with increasing Mn content and heating temperature. When Mn-ferrite was formed by $MnCl_2$reagent electrolysis, Ms values were higher than those formed from the sulfuric acid leaching of the wasted manganese dry cell and $MnSO_4$reagent by electrolysis. In Mn-ferrite, which was formed from the sulfuric acid leaching of the wasted manganese dry cell by electrolysis, Ms and Mr values were higher, Hc values were lower than which was formed by $MnSO_4$ reagent electrolysis at $200^{\circ}C\;and\;300^{\circ}C, while the same values at $100^{\circ}C$. The shape of particles was spherical type, the sizes of them were about $0.1{\mu}m$ sub-micron in $MnSO_4$reagent electrolysis, $0.5{\mu}m$ in the sulfuric acid leaching of the wasted manganese dry cell by electrolysis.

  • PDF