• Title/Summary/Keyword: $MnCl_2$

Search Result 441, Processing Time 0.03 seconds

Mineralogy and Geochemistry of Minerals from the Jinwon Gold-silver Deposit, Republic of Korea (진원 금-은 광상에서 산출되는 광물들의 산출상태 및 화학조성)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.491-504
    • /
    • 2016
  • Jinwon Au-Ag deposit is located in the Uijin gun which is southeast 300 km from Seoul. The deposit area consists of mainly Precambrian Hongjesa granite, which occurs as porphyroblastic texture, medium grain and composed of quartz, feldspar and mica. This deposit consists of four parallel hydrothermal quartz veins that fill NE oriented fractures in Precambrian Hongjesa granite. The grade of quartz veins contain from 3.0 to 21.4 g/t (average 6.4 g/t) gold and from 5.0 to 252.0 g/t (average 117.9 g/t) silver, respectively. They vary from 0.2 m to 0.6 m (average 0.3 m) in thickness and extend to about 200 m in strike length. Quartz veins occur as massive, network, cavity, breccia, crustiform, comb and zonal textures. Wallrock alteration has silicification, sericitization, pyritization and argillitization. The mineralogy of the quartz veins consists of quartz, arsenopyrite, cassiterite, pyrite, sphalerite, chalcopyrite, galena, electrum, tetrahedrite, canfieldite, argentite, Ag-Sb-S mineral, Mn-Fe-O mineral, Pb-O mineral and Pb-P-Cl-O mineral(chloro-pyromorphite). Chemical compositions of minerals from this deposit are as followed; Fe/Fe+Mg of sericite is from 0.32 to 0.71, As content of arsenopyrite ranges from 27.91 to 30.33 atomic %, FeS content of sphalerite range from 9.77 to 16.76 mole %, Ag content of electrum is from 29.42 to 37.41 atomic % and Ag content of tetrahedrite range from 32.17 to 36.53 wt.%, respectively. Baased on mineralogy and chemical compositions of minerals from Jinwon Au-Ag deposit, deposition of minerals was caused by a change in temperature, oxygen fugacity($fO_2$) and sulfur fugacity($fS_2$) from the near neutral hydrothermal fluid evolved by reaction with wallrock.

Analysis of Bacterials Community Structure in Leadchate-Contaminated Groundwater using Denaturing Gradient Gel Electrophoresis (Denaturing Gradient Gel Electrophoresis를 이용한 매립지 침출수로 오염된 지하수의 세균 군집 분석)

  • Kim Jai-Soo;Kim Ji-Young;Koo So-Yeon;Ko Kyung-Seok;Lee Sang-Don;Cho Kyung-Suk;Koh Dong-Chan
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.166-173
    • /
    • 2006
  • This research has been performed to clarify the relationship between hydrogeochemistry and bacterial community structure in groundwater contaminated with landfill leachate. We collected and analyzed samples from 5 sites such as leachate (KSG1-12), treated leachate (KSG1-16), two contaminated groundwaters (KSG1-07 and KSG1-08) and non-contaminated groundwater (KSG1-13). pH was 8.83, 8.04, 6.87, 6.87 and 6.53 in order; redox potential (Eh) 108, 202, 47, 200 and 154 mV; electric conductivity (EC) 3710, 894, 1223, 559 and 169.9 $\mu$S/cm; suspended solids (SS) 86.45, 13.74, 4.18, 0.24 and 11.91 mg/L. In KSG01-12, the ion concentrations were higher especially in $Cl^-$ and $HCO_3^-$ than other sites. The concentrations of Fe, Mn and $SO_4^{2-}$ were higher In KSG1-07 than in KSG1-08, and vise versa in $NO_3^{2-}$. In the comparison of DGGE fingerprint patterns, the similarity was highest between KSG1-13 and KSG1-16 (57.2%), probably due to common properties like low or none contaminant concentrations. Otherwise KSG1-08 showed lowest similarities with KSG1-13 (25.8%) and KSG1-12 (27.6%), maybe because of the degree of contamination. The most dominant bacterial species in each site were involved in $\alpha$-Proteobacteria (55.6%) in KSG1-12, $\gamma$-Proteobacteria (50.0%) in KSG1-16, $\beta$-Proteobacteria (66.7%) in KSG1-07, $\gamma$-Proteobacteria (54.5%) in KSG1-08 and $\beta$-Proteobacteria (36.4%) in KSG1-13. These results indicate that the microbial community structure might be changed according to the flow of leachate in grounderwater, implying changes in concentrations of pollutants, available electron accepters and/or other environmental conditions.

INFLUENCE OF SODIUM ASCORBATE ON MICROTENSILE BOND STRENGTHS TO PULP CHAMBER DENTIN TREATED WITH NAOCL (NaOCl로 처리된 치수강 상아질에서 sodium ascorbate가 미세인장결합강도에 미치는 영향)

  • Jeon, Soo-Yeon;Lee, Kwang-Won;Yu, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.6
    • /
    • pp.545-552
    • /
    • 2008
  • The purpose of this study was to evaluate the influence of sodium ascorbate on microtensile bond strengths of total-etching adhesive system to pulp chamber dentin treated with NaOCl. Pulp chambers of extracted human non-caries permanent molars were treated as follows: group 1, with 0.9% NaCl; group 2, with 5.25% NaOCl; group 3, with 5.25% NaOCl and 10% sodium ascorbate for 1min; group 4, with 5.25% NaOCl and 10% sodium ascorbate for 1 min and 10ml of water; group 5, with 5.25% NaOCl and 10% sodium ascorbate for 5 min; group 6, with 5.25% NaOCl and 10% sodium ascorbate for 5 min and 10ml of water; group 7, with 5.25% NaOCl and 10% sodium ascorbate for 10 min; group 8, with 5.25% NaOCl and 10% sodium ascorbate for 10 min and 10ml of water. Treated specimens were dried, bonded with a total-etching adhesive system (Single bond), restored with a composite resin(Z250) and kept for 24h at 100% humidity to measure the microtensile bond strength. NaOCl-treated group (group 2) demonstrated significantly lower strength than the other groups. No significant difference in microtensile bond strengths was found between NaCl-treated group (group 1) and sodium ascorbatetreated groups (group 3-8). The results of this study indicated that dentin treated with NaOCl reduced the microtensile bond strength of Single bond. Application of 10% sodium ascorbate restored the bond strength of Single bond on NaOCl-treated dentin. Application time of sodium ascorbate did not have a significant effect.

Characteristics of Lactate Dehydrogenase Produced from Lactobacillus sp. FFy111-1 as a Ruminant Probiotic (반추동물용 활성제로서 Lactobacillus sp. FFy111-1이 생산한 Lactate Dehydrogenase의 특성에 관한 연구)

  • Sung, H.G.;Kim, D.K.;Bae, H.D.;Shin, H.T
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.625-634
    • /
    • 2004
  • The objective of this experiment is to study the possibility of lactate dehydrogenase(LDH) enzyme to prevent lactate accumulation in the rumen, For understanding capacity of bacterial LDH in rumen environments, this study was conducted to explore the effects of temperature, pH, VFAs and metal ions on Lactobacillus sp. FFy111-1's LDH activity, and the LDH activation in rumen fluid accumulated lactate. The optimum pH and temperature of LDH were pH 7.5 and 40$^{\circ}C$, respectively. The LDH activity had a good thennostability at range from 30 to 50$^{\circ}C$. The highest pH stability of the enzyme was at ranges from pH 7.0 to 8.0 and the enzyme activities showed above 64% level of non-treated one at pH 6.0 and 6.5. The LDH was inactivated by VFAs treatments but was enhanced by metal ion treatments without NaCl and $CuSO_4$ Especially, the LDH activity was increased to 127% and 124% of its original activity by 2 mM of $BaCl_2$ and $MnSO_4$, addition, respectively. When the acidic rumen fluid was treated by LDH enzyme of Lactobacillus sp. FFy111-1, the lactate concentration in the rumen fluid was lower compared with non-treated rumen fluid(P<0.05). This lactate reduction was resulted from an action of LDH. It was proved by result of purified D,L-LDH addition that showed the lowest lactate concentration among the treatments(P<0.05). Although further investigation of microbial LDH and ruminal lactate is needed, these findings suggest that the bacterial LDH has the potential capability to decrease the lactate accumulated in an acidic rumen fluid. Also, screening of super LDH producing bacteria and technical development for improving enzyme activity in rumen environment are essential keys for practical application.

Enzymatic Characteristics of an Extracellular Agarase of Cytophaga sp. KY-1 and Molecular Cloning of the Agarase gene

  • Kim, Young-Ho;Kim, Youn-Sook;Lee, Jae-Ran;Lee, Eun-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.31-38
    • /
    • 1993
  • A bacterial strain KY-l isolated from sewage was able to produce an extracellular agarase(agarose 4-glycanohydrolase. EC 3.2.1.81). The strain KY-1 was identified as Cytophaga fermentans subsp. agarovorans based on its morphological and physiological characteristics. The agarase was purified by ammonium sulfate precipitation followed by DEAE-Sephadex A-50. Bio-Gel P-100. and CM-Cellulose column chromatography. The molecular weight of the purified enzyme was 24 kDa by SDS-polyacrylamide gel electrophoresis. The optimum temperature and pH for the enzyme activity were 30^{circ}C and 7.5, respectively. The enzyme activity was significantly inhibited in the presence of 0.1 mM $HgCl_2$. whereas it was elevated 3 times by $MnSO_4$ at 1 mM concentration. The Km value and Vmax were 16.67 mg/ml and 3.77 unit/ml.min. The agarase gene was cloned into Escherichia coli MC1061 using the plasmid vector pBR322. A 1.4 Kb DNA fragment of PstI-digested chromosomal DNA of C. fermentans KY-l was inserted into the PstI site of pBR322. expressed in the E. coli. and up to 60% of the total enzyme was extracellularly secreted. Enzymatic properties of the extracellular agarases produced by both the transformant and the donor were very similar in terms of optimal pH and temperature.

  • PDF

Characteristics of Environmentally-Friendly Conversion Coating of AZ31 Magnesium Alloy by a Alkaline Phosphate-Permanganate Solution (알카리성 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 친환경 화성 처리 및 화성 피막의 특성 평가)

  • Kim, Myung-Hwan;Lee, Man-Sig;Kwag, Sam-Tag;Moon, Myung-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.82-88
    • /
    • 2011
  • A uniform chromium-free conversion coating treated with an alkaline phosphate- permanganate solution was formed on the AZ 31 magnesium alloy. The effect of acid pickling on the morphology and on the corrosion resistance of the alkaline phosphate-permanganate conversion coating was investigated. The chemical composition and phase structure of conversion coating layer were determined via optical microscopy, SEM, EDS, XPS and XRD. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to $2.4\;{\mu}m$. The alkaline phosphate-permanganate conversion coating was mainly composed of elements Mg, O, P, Al and Mn. The conversion-coated layers were stable compounds of magnesium oxide and spinel ($MgAl_2O_4$). These compounds were excellent inhibitors to corrosion. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization technique. EIS results showed a polarization resistance of $0.1\;k{\Omega}$ for the untreated Mg and $16\;k{\Omega}$ for the alkaline phosphate-permanganate conversion treatment sample, giving an improvement of about 160 times. The results of the electrochemical measurements demonstrated that the corrosion resistance of the AZ 31 magnesium alloy was improved by the alkaline phosphate-permanganate conversion treatment.

Influence of Sea Water Treatment on Soil Chemical Properties and Contents of Inorganic Elements in Garlic (바닷물 살포가 토양 화학성과 마늘 무기성분 함량에 미치는 영향)

  • Kim, Myung-Sook;Lee, Sang-Bum;Kim, Yoo-Hak;Kang, Seong-Soo;Hyun, Byung-Keun;Gong, Hyo-Young;Ha, Sang-Keon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1295-1299
    • /
    • 2011
  • This study was conducted at the organic farming fields which garlics were planted. The treatments were as follows; water of $3,850L\;ha^{-1}$ (Control), plots applied 1 time, 2 times and 3 times with sea water of $3,850L\;ha^{-1}$. In 3 times sea water treatment plot, the level of EC, Exch. Na and $Cl^-$ were 1.1, 2.1, and 3.3 times higher than control plot, respectively. Due to seawater application, the contents of inorganic elements such as T-N, Ca, Mg, Na, Fe, Mn, and Zn in garlic were generally lower than Control, but not significant.

Evaluation of mineral, heavy metal and phthalate contents in mudflat solar salt and foreign salt (국내산 갯벌천일염과 외국산 소금의 미네랄, 중금속 및 phthalate 함량 평가)

  • Kim, Hag-Lyeol;Lee, In-Seon;Kim, In-Cheol
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.520-528
    • /
    • 2014
  • The purpose of this study was to evaluated a phthalate, heavy metal contents and physicochemical quality properties in korean mudflat solar salt and foreign salts. DEHP in mudflat solar salt (MSS) was detected a low level (9.00~669.89 ppb), but it was shown a high level excess to 1.5 ppm criteria in the foreign solar salt (FSS) 5 type (3,440.64, 3,266.56, 2,189.65, 4,010.69, 4,554.20 ppb) and foreign large solar salt (FLSS) 1 type (1,983.27 ppb). Also, DEHP in FSS 2 type (930.15, 1,310.07 ppb) and FLSS 1 type (924.92 ppb) was detected a high level not excess to criteria. No detected DMP, DEP, DIBP, DBP, DAP, BBP, DCHP and DEHA contents in MSS and foreign salt (FS). Na ion was shown a significantly higher level (p<0.05) in FS (407,345.87~426,612.14 ppm) than in MSS (363,633.98 ppm), but it was shown a high level in Mg (p<0.01), K (p<0.05), Ca ion (p<0.05) of FSS compared to foreign refined salt (FRS). Cl ion (532,727.07 ppm) of MSS was the most low level (p<0.001) compared to FS, but it was shown a high level (p<0.001) in Br ion (625.07 ppm). $SO_4$ ion was not shown a significant difference in DS and FS. It was display a high level in Mn of MSS, and Al, Fe of FLSS. Heavy metal contents (As, Cd, Pb and Hg) in MSS and FS was not significant difference, it was safety level as edible salt.

Size Distributions of Trace Elements in Airborn Particulates Collected using Drum impactor at Gosan, Jeju Island : Measurements in Springtime 2002 (DRUM impactor를 이용한 대기 입자상 물질 중 원소성분의 입경분포 특성 : 제주도 고산지역의 2002년 봄철 (3.29-5.30) 측정 연구)

  • 한진석;문광주;류성윤;안준영;공부주;홍유덕;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.555-569
    • /
    • 2004
  • Size -segregated measurements of aerosol composition using 8-stage DRUM impactor are used to determine the transport of natural and anthropogenic aerosols at Gosan site from 29 March to 30 May in 2002. Separation of ambient aerosols by DRUM impactor offers many Advantages over other standard filtration techniques. Some of the most important advantages are the ability to segregate into details by particle tire, to better preserve chemical integrity since the air stream doesn't pars through the deposit, to collect samples as a function of time, and to have a wide variety of impaction surfaces available to match analytical needs. Although the transport of Yellow sand is a well-known phenomenon in springtime, the result of measurement shows that not only soil dust but also anthropogenic aerosols, including sulfur, enriched trace metals such as Pb, Ni, Zn. Cu, Cr, As, Se, Br, are transported to Gosan in springtime. This study combines the size- and time-resolved aerosol composition measurements with isentropic, backward air-mass trajectories in order to identify some potential source regions of anthropogenic aerosols. As a result, during the NYS period, the average concentration of PM$_{10}$ was 46$\mu\textrm{g}$/㎥, Si, Al. S, Fe, Cl, K, Ca were higher than 1,000 ng/㎥ and Ti was about 100 ng/㎥. The concentrations of Zn, Mn, Cu. Pb, Br, Rb, V, Cr, Ni. At, Se ranged between 1 and 70 ng/㎥. More than 50% typical soil elements, tuck as Al, Si, Fe, Cd. Ti, Cr, Cu, Br. were distributed in a coarse particle range(5.0-12${\mu}{\textrm}{m}$). In other hand, anthropogenic pollutants, luck as S, N, Vi, were mainly distributed in a fine particle range (0.09-0.56${\mu}{\textrm}{m}$). During the YS period, PM$_{10}$ increased about 8 times than NYS period, and main soil elements, such as Al, Si, S, K, V, Mn, Fe also doubled in coarse particle range (1.15-12${\mu}{\textrm}{m}$). But Zn, As, Pb, Cu and Se, which distributed in the time aerosols (0.09-0.56${\mu}{\textrm}{m}$), were on the same level with or decreased than NYS period. Finally. except the YS Period, coarse particles (2.5-12${\mu}{\textrm}{m}$) are inferred to be influenced by soil, coal combustion, waste incineration, ferrous and nonferrous sources through similar pathways with Yellow Sand. But fine particles have different sources, such as coal combustion, gasoline vehicle, biomass burning, oil or coal combustion, nonferrous and ferrous metal sources, which are transported from China, Korea peninsula and local sources.ces.

Biocompatibility and Surface Characteristics of (Si,Mn)-HA Coated Ti-Alloy by Plasma Electrolytic Oxidation (PEO법으로 (Si,Mn)-HA 코팅된 치과 임플란트용 Ti 합금의 생체적합성 및 표면특성)

  • Gang, Jeong-In;Son, Mi-Gyeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.83-83
    • /
    • 2017
  • 생체재료의 표면은 이식과 동시에 생체계면의 역할을 하게 되어, 일련의 생물학적 반응이 시작되고 진행되는 중요한 장소가 된다. 초기에 생체계면에서 일어나는 단백질 흡착이나 염증반응을 비롯한 생물학적 반응들은 궁극적으로 임플란트의 성패를 좌우할 만큼 중요하다. 골융합을 개선하기 위한 다른 방법으로 생체불활성의 타이타늄 (Ti)과 골조직의 능동적인 반응을 이루기 위해 생체활성 표면을 부여함으로서 계면에서의 골형성 반응을 증진시키는 방법이 이용된다. 생체불활성의 Ti과 Ti합금은 골조직과 직접적인 결합을 이루지 못하므로, 골조직과의 반응을 향상하기 위해 여러 종류의 생체활성 재료를 코팅하는 방법이 연구되어 왔고, 이 중 생체의 변화와 가장 유사한 하이드록시아파타이트 코팅이 가장 대중적인 방법으로 사용되었으며 이는 초기 골형성을 촉진하는 것으로 알려졌다. 치과용 임플란트의 표면형상과 화학조성이 골 융합에 영향을 미치는 가장 중요한 인자이므로 최근의 연구동향은 이들 두 가지 표면특성을 결합함으로서 결과적으로 최적의 골세포반응을 유도하고, 골융합 후 골조직과의 micromechanical interlocking에 의해 임플란트의 안정성에 중요한 역할을 하는 마이크론 단위의 표면조도와 표면 구조를 유지하면서, 부가적으로 골 조직 반응을 능동적으로 개선할 수 있는 생체활성 성분을 부여하여 골 융합에 상승효과를 이루기 위한 표면처리법에 관해 많은 연구가 요구되어지고 있다. 따라서 골을 구하는 원소인 망간과 실리콘으로 치환된 하이드록시아파타이트를 플라즈마 전해 산화법으로 코팅하여 세포와 잘 결합할 수 있는 표면을 제공함으로써 골 융합과 치유기간을 단축시킬 수 있을 것으로 사료된다. 실험방법은 시편은 치과 임플란트 제작 합금인 Ti-6Al-4V ELI disk (grade 5, Timet Co., USA; diameter, 10 mm, thickness, 3 mm)이며, calcium acetate monohydrate, calcium glycerophosphate, manganese(II) acetate tetrahydrate, sodium metasilicate을 설계조건에 따라 혼합 제조된 전해질 용액을 이용하여 플라즈마 전해 산화법으로 표면 코팅을 실시하였다. 각 시편의 플라즈마 전해시 전압은 280V로 인가하였고, 전류밀도는 70mA로 정전류를 공급하여 해당 인가전압 도달 후 3분 동안 정전압 방식을 유지하였다. 코팅된 피막 표면을 주사전자현미경과 X-선 회절분석을 통하여 미세구조 및 결정상을 관찰하였다. 또한 코팅된 표면의 생체활성 평가는 정량적으로 평가하기 위해 동전위시험과 AC 임피던스를 통하여 시행하였다. 분극거동을 확인하기 위해 potentiostat (Model PARSTAT 2273, EG&G, USA)을 이용하여 구강 내 환경과 유사한 $36.5{\pm}1^{\circ}C$의 0.9 wt.% NaCl에서 실시하였다. 전기화학적 부식 거동은 potentiodynamic 방법으로 조사하였고 인가전위는 -1500 mV에서 2000 mV까지 분당 1.67 mV/min 의 주사속도로 인가하여 시험을 수행하였다. 임피던스 측정은 potentiostat (Model PARSTAT 2273, EG&G, USA)을 이용하였으며, 측정에 사용한 주파수 영역은 10mHz ~ 100kHz 까지의 범위로 하여 조사하였고 ZSimWin(Princeton applied Research, USA) 소프트웨어를 사용하여 용액의 저항, 분극 저항 값을 산출하였다. 망간의 함량이 증가할수록 불규칙한 기공을 보였으며, 실리콘은 $TiO_2$ 산화막 형성을 저해하는 경향을 확인할 수 있었다. 단독으로 표면을 처리한 경우보다 두 가지 원소를 이용해 복합 표면처리를 시행한 경우가 내식성이 좋아 임플란트과의 골 유착에 긍정적인 영향을 미칠 것으로 사료된다.

  • PDF