• Title/Summary/Keyword: $Mg_2Si$

Search Result 1,775, Processing Time 0.039 seconds

The Quality Characteristics of Wheat-Makgeolli Made from Different Cultivars and Milling Rates (국산 밀 품종 및 제분율에 따른 막걸리의 품질 특성)

  • Sim, Eun-Yeong;Lee, Seuk Ki;Woo, Koan Sik;Kim, Hyun-Joo;Kang, Chon-Sik;Kim, Si Ju;Oh, Sea-Kwan;Park, Hye-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.5
    • /
    • pp.777-784
    • /
    • 2016
  • This study aimed to evaluate the quality characteristics of wheat-Makgeolli (WM), a traditional Korean cereal alcoholic drink, using three varieties of wheat, namely Jokyoung (JK), Baegjoong (BJ) and Keumkang (KK). Samples of WM brewed from 100%, 85% and 70% milling rates of the three Korean wheat cultivars were analyzed for alcohol, pH, coloring degree, total acids, soluble solid, free sugars, and organic acids. As the milling rates in wheat decreased, total sugar content in WM increased while the pH of all samples decreased. The WM exhibited 0.95~1.27% in acidity, $10.2{\sim}12.5^{\circ}Brix$ in total sugar, and 14~16% in alcohol content. The most organic acids in WM was lactic acid, ranging in all the samples from 85.3~650.3 mg%. The results showed that BJ under a 70% milling rate had the highest reducing sugar contents and 15.97% in alcohol content. The carbohydrate content increased with the milling rate of wheat. Resulting in a positive correlation between carbohydrate content of wheat and total acids, reducing sugars (p<0.001), and alcohol content (p<0.05) in WM. Total sugar content is positively correlated with alcohol and reducing sugar content (p<0.001). Considering the yield, the milling rates will be adjusted to raw material prices.

Synthesis of Cerium Doped Yttrium Aluminum Garnet Hollow Phosphor Based on Kirkendall Effect

  • Kim, Min-Jeong;Suphasis, Roy;Gong, Dal-Seong;Jeong, Hyeon-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.185-185
    • /
    • 2012
  • 중공 발광 나노 물질은 특유의 구조적 특성(낮은 밀도, 높은 비표면적, 다공성 물질, 낮은 열팽창계수 등)과 광학적 성질을 이용하여 디스플레이 패널, 광결정, 약물전달체, 바이오 이미징 라벨 등의 다양한 적용이 가능하다. 이러한 적용에 있어 균일한 크기와 형태의 중공 입자는 필수 조건으로 여겨진다. 지금까지 합성된 중공 발광 입자에는 BaMgAl10O17 : Eu2+-Nd3+, Gd2O3 : Eu3+, $EuPO_4{\cdot}H_2O$과 같은 것들이 있으나 크기 조절이 어렵고, 그 균일성이 확보되지 못하였다. 균일한 크기의 중공 발광 입자를 만들기 위해 SiO2나 emulsion을 템플릿으로 이용하여 황화카드뮴, 카드뮴 셀레나이드 중공 입자를 합성한 예가 있으나, 양자점의 독성으로 인하여 바이오분야 응용에는 적합하지 않다. YAG는 모체로써 형광체에서 가장 많이 이용되는 물질로, 화학적 안정성과 낮은 독성, 높은 양자 효율 등 많은 장점을 갖고 있다. 특히 세륨이 도핑된 YAG형광체의 경우 WLED, 신틸레이터, 바이오산업에 적용이 가능하다. 그러나 지금까지 중공 YAG:Ce3+형광체를 합성한 예가 없었다. 본 연구에서는 단분산 수화 알루미늄 (Al(OH)3) 입자 위에 세륨이 도핑 된 이트륨 베이직 카보네이트 ($Y(OH)CO_3$)를 균일하게 코팅한 후 열처리를 하여 균일한 크기의 Y3Al5O12:Ce3+(YAG) 중공 입자를 합성하였다. 열처리 온도에 따른 고분해능 투과 전자 현미경(HRTEM), X-선 회절(XRD), 고분해능 에너지 분광법(HREDX) 분석결과, 중공 YAG: Ce3+입자는 Kirkendall 효과에 의해 형성됨을 확인하였다. 전계방사형 주사 전자 현미경(FE-SEM) 측정을 통해, 열처리 후에도 입자의 크기와 형태가 균일함을 확인하였으며, 공초점 현미경 관찰을 통해 중공 형태를 명확히 확인 할 수 있었다. Photoluminescence (PL) 분광법과 형광 수명 이미징 현미경(FLIM)을 이용한 광 특성 분석결과, 합성된 입자는 400-500 nm에서 흡수 파장 (456 nm에서 최대 강도)과 500-700 nm 범위의 발광 파장(544 nm에서 최대 강도)을 나타냈고, 상용 YAG: Ce3+(70 ns)에 준하는 74 ns의 잔광 시간(decay time)이 측정되었다. 단분산 수화 알루미늄 입자의 크기를 조절하여 최종 합성된 YAG: Ce3+의 크기를 조절할 수 있었다. 지름 약 600 nm의 Al(OH)3를 사용한 경우, $1,300^{\circ}C$에서 열처리를 한 후 평균 지름 590 nm의 중공입자를 합성하였고, 약 170 nm의 Al(OH)3를 이용하여, 더 낮은 온도인 $1,100^{\circ}C$에서의 열처리를 통해 평균지름 140 nm의 중공 YAG: Ce3+입자를 합성하였다. 본 연구를 통하여 합성된 균일한 크기의 YAG 중공입자는 LED와 같은 광전변환 소자 및 다기능성 바이오 이미징 등의 나노바이오 소자 분야에 활용될 수 있음이 기대된다.

  • PDF

Vertical Variations of Water Environments and Phytoplankton Community during the 2009 Autumn in the Coast of Dokdo, Korea (2009년 추계 독도연안의 수환경과 식물플랑크톤 군집의 수심별 변화)

  • Kim, Yun-Sam;Park, Kyung-Woo;Park, Jung-Won;Jeune, Kyung-Hee;Kim, Mi-Kyung
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.4
    • /
    • pp.202-211
    • /
    • 2010
  • The variations of physico-chemical factors and the species compositions of phytoplanktons were investigated to analyze the marine ecosystem at the depths during summer in the coast of Dokdo (stations DOK 1-3). The mean values of conductivity (48.9 mS $cm^{-1}$), salinity (32.9 psu) and total suspended solids (57.9 mg $L^{-1}$) were the highest in DOK 1. The biomass (Chl-a) of phytoplanktons was the highest in the surface of DOK 1 (2.61 ${\mu}gL^{-1}$). By the means of physicochemical factors (salinity, turbidity, Chl-a, TN, TP and Si), the water estimated in the coast of Dokdo was more eutrophicated than that in 2008. The phytoplanktons were a total of 42 species in Dokdo, which were composed of 33 species (78.6%) for Bacillariophyceae and 9 species (21.4%) for Dinophyceae. The standing crops of phytoplanktons were the highest ($18{\times}10^3$ cells $L^{-1}$) in the surface of DOK 2 and in the surface of DOK 3, while they were the lowest ($2{\times}10^3$ cells $L^{-1}$) at depth of 40 m of DOK1 and at depth of 30 m of DOK 3. The dominant species of phytoplanktons were Chaetoceros castracanei ($6{\times}10^3$ cells $L^{-1}$) in the surface, Rhizosolenia alata f. gracillima ($3{\times}10^3$ cells $L^{-1}$) at depth of 20 m and Protocentrum compressum ($4{\times}10^3$ cells $L^{-1}$) at the depth of 30 m of DOK 1. At the surface of DOK 2, the dominant species was Bacillaria paxillifer ($6{\times}10^3$ cells $L^{-1}$), while it was Hemiaulus indicus ($12{\times}10^3$ cells $L^{-1}$) at the surface of DOK 3. The DOK 1, which is affected by upwelling, whirlpool and circulation due to the East Korean Warm Current, was the most eutrophicated water body among three stations. The monitoring of marine ecosystem in the coast of Dokdo should be continued to propose the alternatives for water quality and species conservation and to purify the eutrophicated water body due to artificial pollutants as well as natural effectors by the global warming, the climatic change, etc.

Identification of PM10 Chemical Characteristics and Sources and Estimation of their Contributions in a Seoul Metropolitan Subway Station (서울시 지하역사에서 PM10의 화학적 특성과 오염원의 확인 및 기여도 추정)

  • Park, Seul-Ba-Sen-Na;Lee, Tae-Jung;Ko, Hyun-Ki;Bae, Sung-Joon;Kim, Shin-Do;Park, Duckshin;Sohn, Jong-Ryeul;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.74-85
    • /
    • 2013
  • Since the underground transportation system is a closed environment, indoor air quality problems may seriously affect many passengers' health. The purpose of this study was to understand $PM_{10}$ characteristics in the underground air environment and further to quantitatively estimate $PM_{10}$ source contributions in a Seoul Metropolitan subway station. The $PM_{10}$ was intensively collected on various filters with $PM_{10}$ aerosol samplers to obtain sufficient samples for its chemical analysis. Sampling was carried out in the M station on the Line-4 from April 21 to 28, July 13 to 21, and October 11 to 19 in the year of 2010 and January 11 to 17 in the year of 2011. The aerosol filter samples were then analyzed for metals, water soluble ions, and carbon components. The 29 chemical species (OC1, OC2, OC3, OC4, CC, PC, EC, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V, Zn, $Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were analyzed by using ICP-AES, IC, and TOR after proper pretreatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the $PM_{10}$ sources and then six sources such as biomass burning, outdoor, vehicle, soil and road dust, secondary aerosol, ferrous, and brakewear related source were classified. The contributions rate of their sources in tunnel are 4.0%, 5.8%, 1.6%, 17.9%, 13.8% and 56.9% in order.

Effects of Molding Pressure and Sintering Temperature on Properties of Foamed Glass without Blowing Agent

  • Kim, EunSeok;Kim, Kwangbae;Lee, Hyeryeong;Kim, Ikgyu;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.178-183
    • /
    • 2019
  • A process of fabricating the foamed glass that has closed pores with 8 ~ 580 ㎛ sizes without a blowing agent by sintering 10 ㎛ boron-free glass powder composed of CaO, MgO, SO3, Al2O3-83 wt% SiO2 at a molding pressure of 0 ~ 120 MPa and a sintering temperature of 750 ~ 1000℃ was investigated. To analyze the glass transition temperature of glass powder, thermogravimetric analysis-differential thermal analysis (TGA-DTA) method were used. The microstructure and pore size of foamed glass were examined using the optical microscopy and field emission scanning electron microscopy (FE-SEM). For the thermal diffusivity and color of the fabricated samples, a heat flow meter and ultraviolet-visible-near-infrared (UV-VIS-NIR)-colormetry were used, respectively. In the TGA-DTA result, the glass transition temperature of glass powder was confirmed to be 626℃. In the microstructure result, closed pores of 7 ~ 20 ㎛ were formed at 750 ~ 900℃, and they were not affected by the molding pressure and sintering temperature. However, at 1,000℃, when there was 0 MPa molding pressure, closed pores of 580 ㎛ were confirmed, and the pore size decreased as the molding pressure increased. Moreover, at a molding pressure of 30 MPa or higher, closed pores of approximately 400 ㎛ were formed. The porosity showed an increasing trend of smaller molding pressure and larger sintering temperature, and it was controllable in the range of 5.69 ~ 68.45%. In the thermal diffusivity result, there was no change according to the molding pressure, and, by increasing the sintering temperature, up to 0.115 W/m·K could be obtained. The Lab color index (CIE-Lab) results all showed a similar translucent white color regardless of molding pressure and sintering temperature. Therefore, based on the foamed glass without boron and blowing agent, it was confirmed that white foamed glass, which has closed pores of 8 ~ 580 ㎛ and a thermal diffusivity characteristic of 0.115 W/m·K, can be fabricated by changing the molding pressure and sintering temperature.

A Study on Spatial Data Model Standardization for Location Based Service (위치기반서비스를 위한 공간데이터 모델 표준화 연구)

  • Lee, Nack-Hun;Kim, Won-Tae;Ahn, Byung-Ik;Mun, Jae-Hyoung;Si, Jong-Yik
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.83-88
    • /
    • 2002
  • 최근 들어 무선인터넷 및 모바일 컴퓨팅 기술의 급속한 발전과 함께 향후 그 수요가 증대될 것으로 예상되는 분야가 위치기반 서비스(LBS: Location Based Service) 기술이다. 위치기반 서비스는 이동 통신을 통하여 사람 및 사물의 위치를 파악하고 이를 활용한 부가 응용 서비스로 국가 정보기술 인프라의 주요 영역을 점유하고 있는 GIS의 차세대 핵심 기술로 발전이 예상되는 분야이다[3][4]. 현재 3GPP나 3GPP2, OGC, LIF와 같은 여러 표준화 기구 및 산업체에서 위치기반 서비스와 이를 위한 시스템에 대한 연구가 진행중이며 위치기반 서비스를 위한 데이터 모델 표준화 연구는 거의 이루어지지 않고 있는 상황이다. 위치기반 서비스를 위한 데이터 표준화 모델은 이미 구축된 공간 데이터베이스의 재사용과 위치기반 서비스들간의 상호 운용성을 지원할 수 있어야 한다. 본 연구에서는 위치기반 서비스들 간의 상호 호환 및 통합을 가능하게 하고, 기존 공간데이터베이스와 연계하여 이 데이터를 위치기반 서비스에 활용하기 위한 공간 데이터 표준화 모델을 제안하고자 한다. 이를 위해 위치기반 서비스 표준화 사례를 조사하고, 위치기반 서비스를 위한 공간 데이터 모델을 제시하였다. 본 연구에서는 OpenLS의 위치기반 서비스를 기본서비스로 하고, OpenGIS의 공간 데이터 모델을 기반으로 네 가지 기본 위치 데이터 타입과 모델의 요구 사항을 포함하는 공간 데이터 표준모델을 개발하였다. 위치기반 공간 데이터 표준 모델은 위치기반 서비스와 데이터들과의 연계를 쉽게 하고, 위치기반 서비스들 간의 상호 운용성을 높이며, 기존 사용자 시스템의 수정 없이 인터페이스만을 추가함으로써 표준을 수용할 수 있다.\pm}153.2,\;116.1{\pm}94,\;29.4{\pm}30.3,\;45.1{\pm}44$로 Mel 10군과 Mel 30군이 유의적인 감소를 보였으나(p<0.05) 이들 두 군 간의 차이는 나타나지 않았다. 이상의 결과로, 랫트에서 복강수술 후 melatonin 10mg/kg투여가 복강 내 유착 방지에 효과적이라고 생각된다.-1}{\cdot}yr^{-1}$로서 두 생태계에 축적되었다.여한 3,5,7군에서 PUFA 함량이 증가한 반면, SFA 함량은 감소하여 P/S 비율, n-3P/n-6P 비율은 증가하는 경향이었으며 이는 간장의 인지질, 콜레스테롤 에스테르, 총 지질의 지방산조성에서도 같은 경향을 볼 수 있었다.X>$(C_{18:2})$와 n-3계 linolenic acid$(C_{18:3})$가 대부분을 차지하였다. 야생 돌복숭아 과육 중의 지방산 조성은 포화지방산이 16.74%, 단불포화지방산 17.51% 및 다불포화지방산이 65.73%의 함유 비율을 보였는데, 이 중 다불포화지방산인 n-6계 linoleic acid$(C_{18:2})$와 n-3계 linolenic acid$(C_{18:3})$가 지질 구성 총 지방산의 대부분을 차지하는 함유 비율을 나타내었다.했다. 하강하는 약 4일간의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월

  • PDF

Fused Phosphate and Slag as a Fertilizer in Nursery of Rice (묘대(苗垈)에서 용성인비(熔成燐肥)와 규산질비료(珪酸質肥料)의 효과)

  • Hwang, Young-Soo;Ryu, In-Soo;Oh, Wang-Kun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.4
    • /
    • pp.195-200
    • /
    • 1982
  • Fused phosphate and slag have used as a sources of phosphate and silicate fertilizers. In order to find out effects of these fertilizers on the growth of young rice plants in nursery, relationships between dry matter production and nutrient uptake at different fertilizer application rates were investigated for two rice varieties, Milyang 23 (a Indica-Japonica hybrid) and Akibare (a Japonica). The results were summarized as followers; 1. The maximum dry matter production was obtained at 75-150 kg/10a of fused phospate and 100-200 kg/10a of slag, respectively, however, a some variations between varieties were recognized. 2. The top/root ratio of varieties around 1.0 was proper for healty see dings and this ratio was reached at application of 75 kg/10a of fused phosphate and 200 kg/10a of slag. 3. The efficiency of applied silicate of rice seedlings was higher in fused phosphate than in slag. 4. The growth of seedling was severely retarded when soil pH was increased above 7 by the application of more than 225 kg/10a of fused phospahte and 400 kg/10a of slag.

  • PDF

Soil Microflora and Microfauna in 29 Years of N-P-K Fertilizer Omission Plot (N-P-K 비료 29년 결제구에서의 미생물상 연구)

  • Jo Chae-Hee;Yu Sun-Nam;Kim Dong-Geun
    • Research in Plant Disease
    • /
    • v.12 no.2
    • /
    • pp.108-114
    • /
    • 2006
  • This study was conducted to elucidate the interactions among soil microorganisms in a special field where one, two or three of N, P, K fertilizers were continuously not applied for 29 years. Crop yield (barley, soybean), soil chemical properties and microflora and microfauna including nematodes, nematophagous fungi, actinomycetes, bacteria, and fungi were examined for two years. Tylenchorhynchus sp. was the most important plant-parasitic nematode (range $11{\sim}642/300 cm^3$ soil) followed by Pratylenchus sp. and Helicotylenchus sp. Among nematophagous fungi, Monacrosporium spp. was the most frequently found followed by Harposporium sp. and Cystopage sp. In general, plots treated with phosphate fertilizer yielded more, had more nematodes, bacteria and actinomycetes. In contrast, total fungal population densities including nematophagous fungi, Cystopage sp. and Harposporium sp. were in reverse; they were more abundant in the plots with lower phosphate contents. Phosphate and pH are positively correlated and two most important determining factors for the population density of soil organisms under investigation. According to correlation analysis, Ca, Mg, and $SiO_2$ contents in soil and population densities of Tylenchorhynchus sp., saprophitic nematodes, actinomycetes, and bacteria were positively correlated with pH, but were negatively correlated with fungal population densities. We hope that the study will add an additional knowledges to understand our mysterious underworld.

Effects of Granular Silicate on Watermelon (Citrullus lanatus var. lanatus) Growth, Yield, and Characteristics of Soil Under Greenhouse

  • Kim, Young-Sang;Kang, Hyo-Jung;Kim, Tae-Il;Jeong, Taek-Gu;Han, Jong-Woo;Kim, Ik-Jei;Nam, Sang-Young;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.456-463
    • /
    • 2015
  • The objective of this study was to determine the effects of granular type of silicate fertilizer on watermelon growth, yield, and characteristics of soil in the greenhouse. Four different levels of silicate fertilizer, 0(control), 600, 1,200, $1,800kg\;ha^{-1}$ were applied for experiment. The silicate fertilizer was applied as a basal fertilization before transplanting watermelon. Compost and basal fertilizers were applied based on the standard fertilizer recommendation rate with soil testing. All of the recommended $P_2O_5$ and 50% of N and $K_2O$ were applied as a basal fertilization. The N and $K_2O$ as additional fertilization was split-applied twice by fertigation method. Watermelon (Citrullus lanatus Thunb.) cultivar was 'Sam-Bok-KKuol and main stem was from rootstock (bottle gourd: Lagenaria leucantha Standl.) 'Bul-Ro-Jang-Sang'. The watermelon was transplanted on April, 15. Soil chemical properties, such as soil pH, EC, available phosphate and exchangeable K, Mg, and available $SiO_2$ levels increased compared to the control, while EC was similar and the concentrations of soil organic matter decreased. Physical properties of soils, such as soil bulk density and porosity were not different among treatments. The growth characteristics of watermelon, such as stem diameter, fresh and dry weight of watermelon at harvest were thicker and heavier for silicate treatment than the control, while number of node was shorter than the control. Merchantable watermelon increased by 3-5% compared to the control and sugar content was 0.4 to $0.7^{\circ}Brix$ higher than the control. These results suggest that silicate fertilizer application in the greenhouse can improve some chemical properties of soils and watermelon stem diameter and dry weight, which are contributed to watermelon quality and marketable watermelon production.

Evaluation of Field Application of Soil Conditioner and Planting Chrysanthemum zawadskii on the Roadside Soils Damaged by Deicing Agents

  • Yang, Ji;Lee, Jae-Man;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.625-636
    • /
    • 2020
  • Background and objects: Soil contamination caused by CaCl2 that is used to deice slippery roads in winter is now recognized as one of the major causes of damage of roadside plants. The aim of this study is to identify the salt mitigation effects of planting Chrysanthemum zawadskii and using a soil conditioner. Methods: The study was conducted at the site where Pinus densiflora f. multicaulis was planted on the roadside between Konkuk University Sageori and Danwol Samgeori located in Chungju-si. We classified the soils collected from the field experimental site according to the degree of the damage caused by deicing agents and divided the site into six blocks of three 80 × 80 cm plots replicated by treatment type. Three selected plots were treated with loess-balls on the soil surface (high salinity with loess-balls, medium salinity with loess-balls, low salinity with loess-balls) and three were left as an untreated control (H = high salinity, M = medium salinity, L = low salinity). The soil properties were measured including pH, EC and exchangeable cations as well as the growth of Chrysanthemum zawadskiia. Results: In the results of soil analysis, pH before planting Chrysanthemum zawadskiia was 6.39-6.74 and in September, five months after planting, the acidity was reduced to 5.43-5.89. Electrical conductivity (EC) was measured to be H > M > L with the higher degree of damage by deicing agents. The analysis of deicing exchangeable cations showed that the content of Ca2+ of soils were significantly correlated to deicing exchangeable cations (Ca2+, Na+, Mg2+) in the shoot part of Chrysanthemum zawadskii. The loess-ball treatment showed a lower content of deicing exchangeable cations than the treatment where Chrysanthemum zawadskiia was planted. Conclusion: In this study, the use of a new system made of loess-balls is proposed as a soil conditioner to protect soils from the adverse effects of road deicing salts. These data suggest that treatment of soil conditioners and planting Chrysanthemum zawadskiia are effective in mitigation of salt stress on the soils damaged by deicing agents.