• Title/Summary/Keyword: $Mg_2Ni$ formation

Search Result 62, Processing Time 0.028 seconds

Carbon Nanofibers with Controlled Size and Morphology Synthesized with Ni-MgO Catalyst Treated by Mechanochemical Process

  • Fangli Yuan;Ryu, Ho-Jin;Kang, Yong-Ku;Park, Soo-Jin;Lee, Jae-Rock
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.9-13
    • /
    • 2004
  • Carbon nanofibers (CNFs) with uniform diameter and controlled size were prepared from catalytic decomposition of $\textrm{C}_{2}\textrm{H}_{2}$ with Ni-MgO catalyst treated by mechanochemical (MC) process. The properties of Ni catalyst, such as size, distribution and morphology, can be governed by tuning grinding time in MC process. As a result, size and structure of CNFs can be tailored. The effect of grinding time to the as-grown CNFs was studied. CNFs with diameter from 10-70 nm were synthesized. CNFs with bundle formation sharing one tip and twisted CNFs were also synthesized with catalyst treated by MC process.

  • PDF

Study of Mg2Ni1-xFex Alloys by Mössbauer Resonance (Mössbauer 공명에 의한 Mg2Ni1-xFex 합금의 연구)

  • Song, MyoungYoup
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.119-130
    • /
    • 1999
  • After preparing $Mg_2Ni_{1-x}{^{57}}Fe_x$(x=0.015, 0.03, 0.06, 0.12 and 0.24) alloys, they were studied by $M{\ddot{o}}ssbauer$ resonance. The $M{\ddot{o}}ssbauer$ spectra of x=0.015 and 0.03 alloys exhibit two doublets (doublet 1, 2). That of x=0.06 alloys shows two doublets (doublet 1,2) and one six-line, and those of x=0.12 and 0.24 alloys have only one six-line. The doublet 1 for x=0.015, 0.03 and 0.06 alloys is considered to result from a fraction of Fe in excess showing a superparamagnetic behavior. The doublet 2 is considered to result from the Fe substituted for Ni in the $Mg_2Ni$ phase. The values of isomer shift 0.24 ~ 0.28 mm/s suggest that the iron exist in the state $Fe^{+3}$. The result that the quadrapole splitting of the doublet 2 is not zero shows that the distribution of electrons around the iron is asymmetric. Their values for the doublet 2, 1.20 ~ 1.38 mm/s, approach the value of quadrapole for the oxidation number +3. The six-line showing the magnetic hyperfine interactions results from the iron which has not substituted the nickel in the $Mg_2Ni$ phase. The $M{\ddot{o}}ssbauer$ spectra of the hydrided alloys with x=0.015 and 0.03 show six-line. This suggests that the iron segregates with the hydriding reaction. The analysis results of the $M{\ddot{o}}ssbauer$ spectrum, the variation of magnetization with magnetic field, Auger electron spectroscopy and electron diffraction show the segregation of Ni and the formation of MgO. This is considered to result from the reaction of the $Mg_2Ni$ phase with the oxygen contained in the hydrogen as impurity.

  • PDF

Evaluations of Microstructure and Hydrogenation Properties on $Mg_2NiH_x$ ($Mg_2NiH_x$ 수소저장합금의 미세결정구조 및 수소화 특성평가)

  • Seok, Song;Shin, Kyung;Kweon, Soon-Yong;Ur, Soon-Chul;Lee, Young-Geun;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.3
    • /
    • pp.238-243
    • /
    • 2005
  • Mg and Mg-based alloys are most important hydrogen storage materials. It is a lightweight and low-cost materials with high hydrogen storage capacity. However, the formation of hydride at high temperature, the deterioration effect, the hydriding and dehydriding kinetics are bad factor for application. In this study, Mg and Ni have been produced by hydrogen induced mechanical alloying(HIMA) process. The raw materials, Mg(purity 99.9%) chip and Ni(purity 99.95%) chip was prepared by using a planetary ball mill apparatus(FRITSCH pulverisette 5). The balls to chips mass ratio(BCR) are 30:1. The hydrogen pressure induced 2.0MPa and milling times were 12, 24, 48, 72, 96 hours with a rotating speed of 200rpm. X-ray diffraction(XRD) analysis was made to characterize the crystallite size and misfit strain. The crystallite size measured by laser particle size analysis(PSA). Microstructure changes were investigated by scanning electron microscopy(SEM) and the transmission electron microscopy(TEM). The hydrogen storage properties were evaluated by using an Sivert's type automatic pressure-composition-therm(PCT) apparatus.

Experimental Study of Hydrogen and Syngas Production over Ni/Ce-ZrO2/Al2O3 Catalysts with Additives (Ni/Ce-ZrO2/Al2O3 촉매의 첨가제에 따른 수소 및 합성가스 생성에 대한 실험적 연구)

  • Cho, Wonjun;Yu, Hyejin;Mo, Yonggi;Ahn, Whaseung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • Performance tests on $Ni/Ce-ZrO_2/Al_2O_3$ catalysts with additives (MgO, $La_2O_3$) were investigated in the combined reforming processes (SCR, ATR, TRM) in order to produce hydrogen and carbon monoxide (it is called "syngas".). The catalyst characterization was conducted using the BET surface analyzer, X-ray diffraction (XRD), SEM, TPR and TGA. The combined reforming process was developed to adjust the syngas ratio depending on the synthetic fuel (methanol, DME and GTL) manufacturing processes. Ni-based catalysts supported on alumina has been generally recommended as a combined reforming reaction catalyst. It was found that both free NiO and complexed NiO species were responsible for the catalytic activity in the combined reforming of methane conversion, and the $Ce-ZrO_2$ binary support employed had improved the oxygen storage capacity and thermal stability. The additives, MgO and $La_2O_3$, also seemed to play an important role to prevent the formation of the carbon deposition over the catalysts. The experimental results were compared with the equilibrium data using a commercial simulation tool (PRO/II).

A Study on Formation of Ni-Tl-P deposits by Electroless Plating (무전해도금에 의한 Ni-Tl-P 피막형성에 관한 연구)

  • 류일광;추현식
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.2
    • /
    • pp.126-134
    • /
    • 2000
  • This study investigated the bath compositions and plating conditions and crystal structure used for achieving nickel-thallium-phosphorus deposits by means electroless plating. The electroless nickel-thallium-phosphorus deposits were achieved with a bath using sodium hypophosphite as the reducing agent and sodium citrate as the complexing agent. The depositing rate was 10.5mg.$cm^{2-1}$ .$hr^{-1 }$ from the optimistic bath composition, 0.1M nickel sulfate, 0.005M thallium sulfate, 0.2M sodium hypophosphite, and 0.05M sodium citrat and the recommended plating conditions, pH 5.5 and $90^{\circ}C$. The composition of alloy deposits determined by X-ray analysis (EDS) that the Thallium was increased with major increasing concentration of complexing agent and thallium ion in bath solution, it decreased according to the increasing concentrations of reduction agent in the bath solution, Bit Phosphorus showed a contrary to the thallium. It was observed from X-ray diffraction analysis, Scanning Electron Microscopy and Transmission Electron Microscopy. The crystalline structure of deposits was amorphous at the first deposited state but it was changed $Ni-T1-Ni_{5}$ $P_2$ polycrystalline when subjected to 1 hour heat treatment of more than $350^{\circ}C$. TEM observation demonstrated that the microstructure was identical to the result of the XRD at as deposited but it became $Ni-Tl-Ni_{5}$ $P_2$ polycrystalline when heated. And grain size was 10-50nm.

  • PDF

Effects of Base Metal on the Partial Oxidation of Methane Reaction (메탄의 부분산화반응에 미치는 Base metal의 영향)

  • 오영삼;장보혁;백영순;이재의;목영일
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.256-264
    • /
    • 1999
  • The performance of the Pt-B/cordierite catalysts (2 wt%) Pt, 70 wt% Alumina, 28 wt%) Ceria and Zirconia, B: base metal) loaded with 6∼12 wt% Mn, Cu, V, Co, Cr and Ba, respectively was studied for partial oxidation of methane reaction and compared with that of Ni loaded catalyst. As a results, it was found that Ba, Co, Cr as well as Ni loaded catalysts showed higher activity for methane partial oxidation of methane than the Mn, Cu and V loaded catalyst. But it was known that catalysts having good activity for methane showed the good activity for coke formation, too. A XRD analysis of the catalyst before and after the reaction using 5 wt% Ni/Al$_2$O$_3$) showed that there were three Ni phases. In these results, it was found that methane oxidation reaction occulted at the front of the catalyst bed consisted of NiAl$_2$O$_4$and NiO and reforming reaction occurred at the rear part of the catalyst bed consisted of reduced Ni.

  • PDF

Theoretical Study of Boric Acid Determination In Nickel Plating Solution (니켈 도금액의 붕산분석에 관한 연구)

  • 염희택
    • Journal of the Korean institute of surface engineering
    • /
    • v.4 no.1
    • /
    • pp.5-15
    • /
    • 1971
  • "Rapid Determination of Boric Acid in Nickel Plating Solution" by the addition of Na$_2$C$_2$O$_4$ and thus preventing the precipitation of i(OH)$_2$ during titiration , has previously been reported. In this paper, the exact amount of glycerine and the complexing possibility of oxalate with nickel has been determined by measn of conductivity titrations. This experimental work has been supported by the mathematical application of the Debye-Huckel and mass action equitions as well as statistical analysis. The results were ; (1) Fro determining boric acid in nickel plating solution, 20 ml of 400ml/ι glycerine was sufficient, since 97% of the H$_3$BO$_3$ was dissoicated by this addition. (2) In the absence of Na$_2$C$_2$O$_4$ the continious precipitation of Ni(OH)$_2$ during titration with NaOH even past end -point for boric acid determination resulted in considerable anlaytical error. (3) In the presence of Na$_2$C$_2$O$_4$ during titration , Ni++ combined with C$_2$O$_4$-to form NiC$_2$O$_4$. The solution with this precititate of very fine, colloidal , trantsparent particles, remained quite clear for approximately 2 hours. Therefore it was shown that the presence of Na$_2$C$_2$O$_4$ prevents the formation of gross Ni(OH)$_2$ precititation by forming NiC$_2$O$_4$ instead of a complex salt with Ni++ , which did not interfere with the visible determination of the end point for boric acid with NaOH titation. This observous may be interpreted in the light of the previously published solubility ratio for NiC$_2$O$_4$ and Ni(OH)$_2$, 0.3mg/100g H$_2$O(25$^{\circ}C$), respectively. Precipitation of the less soluble , albeit transparent salt, NiC$_2$O$_4$ precluded therefore the precipitation of the Ni(OH)$_2$ salt.

  • PDF

A Study on the Formation of Spinel Pigment(Green Pigment based on Magnesium-Chrome) (Spinel Pigment의 생성반응에 관한 연구)

  • 이응상;박철원;황성연
    • Journal of the Korean Ceramic Society
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 1975
  • This study was conducted to research the formation, color development and application for colored glazes of the spinel solid solutions of the green pigment. On specimens prepared by calcining the oxide and basic carbonate mixture at 1250℃ for 1.5 hour, the x-ray analysis, measurement of reflectance and the test of their stabiality as a glaze pigment were carried out. The results are summarized as follows 1) Each sample is composed of single spinel and not of mixture of spinel. 2) Formation of continuous soild solution, except for a few instances, pertaining to Vegard's law was confirmed by means of the x-ray analysis. 3) The more difference between absorption and reflectance lies, the lighter colors are. When the absorption occurs at the high-reflectance, the excitation purity becomes low. On the contrary when the absorption takes place at the low-reflectance, the excitation purity becomes low. On the contrary when the absorption takes place at the low-reflectance, the excitation purity is higher. 4) Colors obtained in the CdO-MgO-Cr2O3-Al2O3 system, as the amounts of Al3+ increased, change from green through brown to pink, and the absorption peak shifts towards violet region. 5) An increase in Co2+ in the CoO-MgO-Cr2O3-Al2O3 system, changes the color from blue green to dark blue. The excitation purity is higher, and the absorption peak shifts toward regions. 6) Colors are green in the NiO-MgO-Cr2O3 and CdO-MgO-Cr2O3 systems in general, but in the ZnO-MgO-Cr2O3 system brillant hue is not obtained. 70 According to the results of the colored glaze test, the spinels turn outto be stable as brilliant glaze pigment in the calcium-magnesia glaze.

  • PDF

Evaluation of Metal Biosorption Efficiency of Laboratory-grown Microcystis under Various Environmental Conditions

  • Pradhan, Subhashree;Singh, Sarita;Rai, Lal Chand;Parker, Dorothy L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.53-60
    • /
    • 1998
  • This study examines the effect of pH, temperature, metal ion concentration and culture density on metal biosorption by the nuisance cyanobacterium Microcystis aeruginosa. Ni biosorption was higher at pH 9.2 than at neutral and acidic pH. In contrast the biosorption of Cu and Zn was maximum at pH 7.0. However, biosorption of Zn was difficult to measure at pH values 9.2 and 10.5, owing to the formation of insoluble complexes. All the test metals (Cu, Zn, and Ni) showed maximum biosorption rate at low culture densities of 40 mg dry wt $1^{-1}$. The biosorption of Cu, Zn, and Ni was maximum at $40^{\circ}C$. However, no worthwhile difference in Zn and Ni sorption was noticed at 4 and $29^{\circ}C$ as compared to $40^{\circ}C$. Of these three metals used Microcystis showed a greater binding capacity ($K_{f}$ value=0.84, Freundlich adsorbent capacity) and accelerated biosorption rate for Cu under various environmental conditions. Fitness of mathematical models on metal biosorption by Microcystis confirmed that the biological materials behave in the same way as physical materials. These results suggest that before using a biosorbent for metal recovery, the environmental requirements of the biosorbent must be ascertained.

  • PDF

Carbon Nanofibers with Controlled Size and Morphology Synthesized with a Ni-MgO Catalyst Treated by Mechnochemical Process

  • Fangli, Yuan;Ryu, Ho Jin
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.94-98
    • /
    • 2003
  • Carbon nanofibers (CNF) with uniform diameter and controlled size could be prepared from catalytic decomposition of $C_2H_2$ with the catalyst treated by mechnochemical(MC) process. The distribution and size of Ni catalyst can be governed by tuning grinding time using MC process. As a result, size and structure of CNF can be controlled. The effect of grinding time to the as-grown CNF was checked. CNFs with diameter from 10-70nm can be synthesized. CNFs with bundle formation sharing one tip were found for MC treated catalyst.

  • PDF