• Title/Summary/Keyword: $Mg^{2+}-ion$

Search Result 1,430, Processing Time 0.027 seconds

Adsorption Characteristic of Mg(II), Al(III), Pb(II) Metal Ions on Cryptand Ion Exchange Resin from Water Fire Extinguishing Agent (물 소화약제로부터 Cryptand 이온교환수지의 Mg(II), Al(III) 및 Pb(II) 흡착특성)

  • Kim, Joon-Tae;Kim, Kwan-Chun
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Resins were synthesized with 1-aza-15-crown-5 macrocyclic ligand attached to styrene(dangerous matter) divinylbenzene(DVB) copolymer with crosslink of 1, 2, 6 and 15% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time and crosslink on adsorption of metal ion from water fire extinguishing agent by the synthetic resin adsorbent were investigated. The metal ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in water was in increasing order of $Mg^{2+}>Al^{3+}>Pb^{2+}$. The adsorption was in the order of 1, 2, 6, and 15% crosslink resin.

Removal of Orthophosphate Ions from Aqueous Solutions Using the Anion Exchange Resin in the Form of $Cl^-$ Ion ($Cl^-$ 형태의 음이온 교환 수지를 이용한 오쏘인산 이온의 제거에 관한 연구)

  • Kim, Ki-Chul;Park, Su-Jin;Cha, Ran;Jeong, Tae-Young;Chung, Hyung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.162-167
    • /
    • 2012
  • The removal of orthophosphate ions from aqueous solutions by the anion exchange resin in the form of $Cl^-$ ion was investigated to elucidate the ion exchange mechanism which depends on the forms of orhthophoshate ions. In addition, the effects of alkalinity and other common anions were studied. The results showed that the orhthophosphate ions with the oxidation state of 2 and 3 ($HPO{_4}^{2-}$ and $PO{_4}^{3-}$) were effectively removed by the anion exchange resin, whereas the part of the $H_2PO_4{^-}$ ion passed through the ion exchange column. This suggested that the affinity of $H_2PO_4{^-}$ to the ion exchange resin was comparable with that of $Cl^-$ ion. In all cases, the effluent pHs have shown to be much lower than the calculated values, indicating that more $Cl^-$ ions than the orthophosphate equivalents in the influent were eluded. As the alkalinity increases, the decrease in pH was minimized. When the alkalinity was 100 mg/L ($CaCO_3$) or greater, 100 mg/L orthophosphate ions including $H_2PO_4{^-}$ were completely removed. The common anions such as $SO{_4}^{2-}$ and $NO_3{^-}$ were also removed by the anion exchange resin, and thus decreased the ion exchange capacity for the removal of orthophosphate.

Characteristics of Groundwater Quality in Bedrock and Tailing Dumps at the Abandoned Dalcheon Mine Area (달천 폐광산 지역에서 광미적재지와 기반암 지하수의 수질특성 연구)

  • Yang, Sung-Il;Kang, Dong-Hwan;Kim, Tae-Yeong;Chung, Sang-Yong;Kim, Min-Chul
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • pH and Eh were measured at 25 points in the abandoned Dalcheon mine. And, major ion components $(Na^+,\;K^+,\;Ca^{2+},\;Mg^{2+},\;Cl^-,\;SO_4^{2-},\;CO_3^{2-},\;HCO_3^-)$ were analyzed through groundwater sampling at 41 points. pH and Eh were measured the highest concentration in serpentinite area. And, pH was between weak alkaline and intermediate values in study area. Groundwater in study area was dominated oxidation-reduction environment caused by reaction with carbonate rock. Because sulfur components contained in carbonate, serpentinite, arsenopyrite and pyrite was dissolved by groundwater, $SO_4^{2-}$ component was high in study area. And $Ca^{2+},\;Mg^{2+}$ of cations were high. Correlation coefficients of ion components in tailing dumps were 0.95 between $Ca^{2+}\;and\;SO_4^{2-}$, 0.86 between $Ca^{2+}\;and\;Mg^{2+}$, 0.85 between $Mg^{2+}\;and\;SO_4^{2-}$. Correlation coefficients of ion components in bedrock were 0.86 between $Mg^{2+}\;and\;SO_4^{2-}$, 0.68 between $Ca^{2+}\;and\;SO_4^{2-}$. Concentration range of $Ca^{2+}$ in tailing dumps was $6.85{\sim}323.58mg/L,\;and\;3.18{\sim}207.20mg/L$ in bedrock. Concentration range of $SO_4^{2-}$ in tailing dumps was $21.54{\sim}1673.17mg/L,\;and\;2.04{\sim}1024.64mg/L$ in bedrock. By the result of Piper diagram analysis with aquifer material, groundwater in tailing dumps was $Ca-SO_4$ type. Groundwater quality types with bedrock material were Mg-$SO_4$ and Mg-$HCO_3$ types in serpentinite area, Ca-$HCO_3$ type in carbonate area, Na-K and $CO_3+HCO_3$ types in hornfels, respectively. As a result of this study, groundwater in tailing dumps were dissolved $Ca^{2+},\;Mg^{2+}\;and\;SO_4^{2-}$ components with high concentration. Also, these ion components were transported into bedrock aquifer.

Changes in Ion Balance and Individual Ionic Contributions to EC Reading at Different Renewal Intervals of Nutrient Solution under EC-based Nutrient Control in Closed-loop Soilless Culture for Sweet Peppers (Capsicum annum L. 'Fiesta') (EC 기준 파프리카 순환식 수경재배에서 양액 교체 주기에 따른 양액 중의 이온 균형 및 각 이온의 EC 기여도 변화)

  • Ahn, Tae-In;Son, Jung-Eek
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.29-35
    • /
    • 2011
  • Individual ion concentrations and ionic contributions to EC reading in the circulated nutrient solution are the important factors to be considered for stable EC-based closed-loop soilless culture. This study was conducted to determine appropriate ion-analysis intervals of the circulated nutrient solutions based on ion concentration, ion balance, and ion electrical conductivity under different renewal intervals in EC-based nutrient control systems for sweet peppers (Capsicum annum L. 'Fiesta') in early growth stage. Average node numbers of the plants were 13 and 18 when the experiment started and finished, respectively, and three plants were grown in each rockwool slab. Four different renewal intervals of circulated nutrient solutions such as 1, 2, 3, and 4 weeks were used as treatment. Nutrient solutions were supplied to the plants based on integrated radiation. Drainage was collected into drain tanks after irrigation ended in the day and then mixed with fresh water until the EC reaches 2.69 $dS{\cdot}m^{-1}$. The replenished nutrient solution was supplied to the plants in the next day. Ion concentrations of the individual ions periodically analyzed in the circulated nutrient solutions showed no significant differences among the treatments during the experimental period. Ion concentrations of $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$, $NO_3{^-}$, ${SO_4}^{2-}$, ${PO_4}^{3-}$, and $Cl^-$ varied within 5-8, 11-14, 2.0-2.7, 0.5-0.6, 14-19, 4-5, 1-4, and 0.3-0.5 $meq{\cdot}L^{-1}$, respectively. Ion balance showed a consistent tendency over all the treatments and especially $K^+$ : $Ca^{2+}$ and ${SO_4}^{2-}$ : ${PO_4}^{3-}$ played great roles in the cation and anion balances in the nutrient solutions, respectively. Activity coefficients of ions such as $K^+$, $NO_3{^-}$, and $H_2PO_4{^-}$ varied within 0.8-0.9 and those of $Ca^{2+}$, $Mg^{2+}$, ${SO_4}^{2-}$ varied within 0.5-0.6, showing little changes with time. Ionic contributions of $K^+$ and $NO_3{^-}$ to EC reading were the greatest followed by $Ca^{2+}$, ${SO_4}^{2-}$, and $Mg^{2+}$ in the order. From the results, we thought that allowable ranges in ion concentration, ion balance, and subsequent individual ionic contributions to EC reading would be obtained within 4-week renewal interval of nutrient solution in EC-based closed-loop soilless culture for sweet pepper plants.

Inhibition Effects of $Ca^{2+}$ and $F^-$ Ion on Struvite Crystallization ($Ca^{2+}$$F^-$ 이온이 Struvite 결정화 반응에 미치는 영향)

  • Kim, Seung-Ha;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.730-737
    • /
    • 2010
  • It is very important to remove fluoride ion before treating semiconductor wastewater containing high concentration of ammonia, phosphates, and fluoride ions by struvite formation. Calcium ion was generally added for the removal of fluoride ion. However, calcium ions remained after removal of fluoride ion can deteriorate the performance of struvite crystalization. It should be removed completely before struvite formation. In this study, the effect of fluoride and calcium ion concentration on the struvite crystalization was investigated. Removal efficiencies of ortho-phosphate with struvite formation were more abruptly decreased than those of ammonium nitrogen, as increase of fluoride ion concentration in synthetic wastewater. The structures of struvite formed in synthetic wastewater containing calcium ion of up to 500 mg/L were identical. Purity of struvite was deteriorated as increase of calcium ion over 500 mg/L. Removal efficiencies of ammonium nitrogen were more decreased than those of phosphate ions as increase of cacium ion in synthetic wastewater.

THE MONITORING OF AEROBIC FLOC-LIKE SLUDGE INFLUENCED BY CALCIUM IONS

  • Yoon, Young H.;Park, Jae-Ro;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.127-133
    • /
    • 2006
  • Aerobic floc-like sludge was formed in a batch reactor and the effect of cations on the formation of aerobic floc-like sludge was studied. In order to enhance the formation (rate) of aerobic floc-like sludge, cations such as $K^+$, $Na^+$, $Ca^{2+}$, and $Mg^{2+}$ were added to the seed sludge. It was found that $Ca^{2+}$ had positive effect on the formation of floc-like sludge, as measured by sludge volume index (SVI) for settle ability. The formation of floc-like sludge was confirmed by the microscopic observation after DAPI staining. The scattered forms of sludge samples at the initial stage became aggregated to form floes after $Ca^{2+}$ addition. To ensure the functions of sludge floes in a treatment plant, the gradient of ionic species around the surfaces of floc-like sludge was monitored by ion selective microelectrodes for ${NH_4}^+,\;{NO_3}^-$, and pH. The effective concentration of $Ca^{2+}$ ion to form floc-like sludge was determined to be 750 mg/L (0.15 mg $Ca^{2+}/mg$ MLSS). Under the effective $Ca^{2+}$ condition, the SVI value was the lowest and large distribution of nitrifying bacteria at the outer surface was observed in the aerobic floc-like sludge. From the results, it was found that the calcium ion functioned as an agent for the formation of aerobic floc-like sludge, resulting in the enhanced nitrification.

Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

  • Sinha, Shahnawaz;Amy, Gary;Yoon, Yeo-Min;Her, Nam-Guk
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.165-173
    • /
    • 2011
  • The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated microsand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of $C_{eq}=10\;{\mu}g/L$ were 500 mg/L for AA and GFH, 520-1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60-95%.

Effects of Hydroxide and Silicate ions on the Plasma Electrolytic Oxidation of AZ31 Mg Alloy (AZ31 마그네슘 합금의 플라즈마전해산화 피막 형성에 미치는 수산화 이온 및 규산 이온의 영향)

  • Moon, Sungmo;Yang, Cheolnam;Na, Sangjo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.147-154
    • /
    • 2014
  • Formation behavior of PEO (Plasma Electrolytic Oxidation) films on AZ31 Mg alloy was studied in aqueous solutions containing various concentrations of hydroxide ion ($OH^-$) and silicate ion ($SiO_3{^{2-}}$) by voltage-time curves, and corrosion resistance of the PEO film-covered specimen was investigated by immersion test in 0.5 M NaCl solution. From the analyses of the voltage-time curves, it is suggested that two different types of anions are essentially needed for the formation of PEO films on AZ31 Mg alloy: film formation agent and local film breakdown agent. $SiO_3{^{2-}}$ ion acts only as a film formation agent but $OH^-$ ion acts not only as a film formation agent but also film breakdown agent. The PEO films prepared on AZ31 Mg alloy in alkaline silicate solution showed very good corrosion resistance without any pitting or filiform corrosions up to 480 h of immersion in 0.5 M NaCl.

Peroxidase and Photoprotective Activities of Magnesium Protoporphyrin IX

  • Kim, Eui-Jin;Oh, Eun-Kyoung;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 2014
  • Magnesium-protoporphyrin IX (Mg-PPn), which is formed through chelation of protoporphyrin IX (PPn) with Mg ion by Mg chelatase, is the first intermediate for the (bacterio)chlorophyll biosynthetic pathway. Interestingly, Mg-PPn provides peroxidase activity (approximately $4{\times}10^{-2}units/{\mu}M$) detoxifying $H_2O_2$ in the presence of electron donor(s). The peroxidase activity was not detected unless PPn was chelated with Mg ion. Mg-PPn was found freely diffusible through the membrane of Escherichia coli and Vibrio vulnificus, protecting the cells from $H_2O_2$. Furthermore, unlike photosensitizers such as tetracycline and PPn, Mg-PPn did not show any phototoxicity, but rather it protected cell from ultraviolet (UV)-A-induced stress. Thus, the exogenous Mg-PPn could be used as an antioxidant and a UV block to protect cells from $H_2O_2$ stress and UV-induced damage.

pH, Alkaline Earth Metal Ion Effects and Miscibility with Hexadecanol on the Monolayer of Palmitic Acid at the Air-Water Interface (기-액 계면에서 Palmitic Acid 단분자막에 대한 pH, 알칼리토금속 이온의 영향 및 Hexadecanol 분자와의 섞임성)

  • Jong-Jae Chung;Byung-Il Seo;Hai-Won Lee;Min-Young Ju
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.294-301
    • /
    • 1993
  • ${\pi}$-A isotherms of the Palmitic acid(PA) with increasing pH shifted to the low area/molecule due to the dissociation of PA at the air-water interface. More condensation of PA monolayers occurred by the addition of Mg$^{2+}$, Ca$^{2+}$ and Ba$^{2+}$ ion in subphase. This condensing effect was increased with increasing the concentration of these ions. Due to the interaction with each ion, PA were formed Mg, Ca, Ba-Palmitate complex. The binding structure between alkaline earth ion and carboxylate ligand in PA has been identified by IR spectrometry. The order of condensing effect of alkaline earth ions at pH 8 was Ca$^{2+}$ > Ba$^{2+}$+ > Mg$^{2+}$. The condensing effect except for Mg$^{2+}$ decreased with increasing atomic number. Whereas, the condensing effect in pure water system decreased with decreasing atomic number in the sequence: Ba$^{2+}$ > Ca$^{2+}$ > Mg$^{2+}$. The miscibility of binary system of PA and hexadecanol in monolayer showed that the miscibility was good for the pure water system. But, in the buffered pH 8 system, bad miscibility was found.

  • PDF