• Title/Summary/Keyword: $Mg^{2+}$-ATPase

Search Result 178, Processing Time 0.023 seconds

Effects of Various Hypnotic and Tranquilizer on the Homogenate ATPase Activity of the Rat Brain Cortex (백서 뇌 피질 Homogenate 내 ATPase 활성도에 미치는 수종 최면제 및 안정제의 영향)

  • Lee, Yang-Hee;Han, Dong-Dae;Chung, Young-Koo;Hwang, Dong-Soo
    • The Korean Journal of Physiology
    • /
    • v.6 no.1
    • /
    • pp.27-31
    • /
    • 1972
  • The activity of Mg and Na-K activated ATPase of homogenate from rat brain cortex was measured in vitro under the variety of conditions. The effects of various hypnotic and tranquilizer such as phenobarbital, amobarbital, diazepam, promazine and chlorpromazine on the activities of both ATPase was investigated and the results was summarized as follows. 1. Na-K ATPase was slightly inhibited by phenobarbital and amobarbital while Mg ATPase was moderately activated by these drugs. 2. Both Mg and Na-K ATPase activities were markedly inhibited by diazepam. 3. Promazine and chlorpromazine markedly inhibited both Mg and Na-K ATPase activities. These findings indicate that remarkable correlation between hypnotic or tranquilizing potency and ATPase inhibition could be observed.

  • PDF

Studies on the Myofibrillar Proteins from Chicken Muscle -2. Comparison of ATPase Activity in Myofibril, Actomyosin and Myosin Extracted from Leg and Pectoral Skeletal Muscle (닭고기의 근원섬유 단백질에 관한 연구 -2. 골격근 부위별로 추출한 근원섬유, 액토미오신 및 미오신의 ATPase 활성 비교-)

  • Park, Chang-Sik;Gong, Yang-Sug;Moon, Yoon-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.1
    • /
    • pp.82-87
    • /
    • 1985
  • Some biological activities showed as ATPase activity of myofibril, actomyosin and myosin extracted from chicken leg and pectoral skeletal muscle were investigated. The $Mg^{+2}$-ATPase activity at 0.05 M KCl were 0.82, 0.38 and 0.11 ${\mu}mole$ Pi/mg protein/min. in actomyosin, myofibril and myosin from pectoral muscle while 0.71, 0.32 and 0.08 ${\mu}mole$ Pi/mg protein/min. in actomyosin, myofibril and myosin from leg muscle. EDTA-ATPase activity at 0.6M KCl were 0.80, 0.42 and 0.40 ${\mu}mole$ Pi/mg protein/min. in actomyosin, myofibril and myosin from pectoral muscle. In case of leg muscle, that activity was noted as 0.69, 0.33 and 0.28 ${\mu}mole$e Pi/mg protein/min in proteins. ATPase activity of myosin from leg and pectoral muscle were inhibited in 10% at a higher concentration of $Mg^{+2}$ than molar concentration of EDTA, and the ATPase activity was increased to 400% compared with control at $10^{-3}M$ of $Ca^{+2}$. Actomyosin from pectoral muscle was solubilized at 0.1 M KCl above and that from leg muscle was solubilized at 0.15 M KCl above. In case of myosin, pectoral muscle was solubilized at 0.25M KCI above and leg muscle was solubilized at 0.30M KCl above.

  • PDF

Purification and Characterization of ($Ca^{2+}$+$Mg^{2+}$)-ATPase of Sarcoplasmic Reticulum from Rat Skeletal Muscle (쥐 근소포체의 ($Ca^{2+}$+$Mg^{2+}$)-ATPase의 분리정제와 그 효소특성에 관하여)

  • Lee, Jong-Soon;Ha, Doo-Bong;Chung, Chin-Ha
    • The Korean Journal of Zoology
    • /
    • v.28 no.1
    • /
    • pp.31-43
    • /
    • 1985
  • The $(Ca^{2+}+Mg^{2+})$-ATPase has been purified homogeneously from sarcoplasmic reticulum of rat skeletal muscle by sucrose density gradient centrifugation. The purified enzyme has a molecular weight of 115,000 as judged by polyacrylamide gel electrophoresis in the presence of sodium dedecyl sulfate, and therefore has the same size of the enzyme in rabbit and chick skeletal muscle. $Ca^{2+}, Mg^{2+}, Fe^{2+}, Co^{2+}, and Mn^{2+}$ at 50 $\\muM$ show stimulatory effect on the ATP-ase, while $Zn^{2+}, Cu^{2+}, and Hg^{2+}$ inhibit it at the same concentration. The ATPase activity is insensitive to antimalarial drugs such as quinine and quinacrine, but is sensitive to inhibition by p-hydroxymecurie benzoate and phenylmethylsulfonylfluoride. The enzyme has optimum pH of 6 to 7 and Km value for ATP is estimated to be 98 $\\muM$. Thus, a number of biochemical properties of this enzyme appear to be different from those of the enzyme that have been isolated from rabbit skeletal muscle. The $(Ca^{2+}+Mg^{2+})$-ATPase appears to be selectively degraded in microsomal fraction. The activity of metalloendoprotease is evident in the microsomal preparation when assayed by radioactively labeled protein substrate, such as $^{3}H-casein and $^{125}I$-insulin. However, it is presently unclear whether the metalloendoprotease is responsible for the degradation of the $(Ca^{2+}+Mg^{2+})$-ATPase.

  • PDF

Studies on the Calcium Uptake and ATPase Activity of the Fragmented Sarcoplasmic Reticulum (筋小胞體의 Ca 吸收能과 ATPase 活性에 관한 硏究)

  • Ha, Doo-Bong;Han, Jang-Hyun
    • The Korean Journal of Zoology
    • /
    • v.14 no.2
    • /
    • pp.43-56
    • /
    • 1971
  • The Ca uptake by the fragmented sarcoplasmic reticulum of the rabbit skeletal muscle was measured under various concentrations of K, Mg, Caffeine, procaine and quinine. The ATPase activity of this reticular membrane was measured under the same conditions simultaneously. The saturation of Ca uptake was almost completed within 1 minute. The Ca uptake was inhibited by high concentrations of K (above 50 mM) and Mg (above 1 mM)in the absence of ATP. When ATP is present, however, the Ca uptake did not reflect the concentration of K, while it increased greatly as the concentration of Mg was increased. Caffeine and procaine caused the inhibition of Ca uptake in the presence of ATP, but quinine did not. The ATPase activity of the membrane was little affected by the concentration of K, while it was enhanced in the presence of Mg. Caffeine, procaine and quinine did not influence the ATPase activity.

  • PDF

The Effects of Ginseng on $Na^+,\;K^+-ATPase$ Activity of Sarcolemma Fragments in Rat Hearts (흰쥐에 인삼투여시 심장근 섬유막 절편 $Na^+,\;K^+-ATPase$ 활성의 변화)

  • Lim, Jeung-Eun;Kim, Nak-Doo
    • Korean Journal of Pharmacognosy
    • /
    • v.16 no.2
    • /
    • pp.93-98
    • /
    • 1985
  • This investigation was performed to study the effect of Ginseng water extract on the cardiac sarcolemma $Na^+,\;K^+-ATPase$ activity of rat hearts. The Ginseng water extract (100mg/kg/day) was administered orally to Sprague-Dawley rats for one, four and seven days. The fragment of sarcolemma was prepared by the method of Matsui and Erdmann and the $Na^+,\;K^+-ATPase$ and $Mg^{++}-ATPase$ activity were measured by the method of Martins and Doty. $Na^+,\;K^+-ATPase$ activity in the rat heart treated with Ginseng water extract for 1 day was not significantly different from control value, but the activity was decreased by 13.4% in the rat heart treated for 4 days and was decreased by 20.4% in the 7 days treated group. $Mg^{++}-ATPase$ activity in the rat treated with ginseng water extract was similar to control value. It may be concluded that chronic administration of Ginseng may inhibit the $Na^+,\;K^+-ATPase$ enzyme activity, but single administration may not inhibit the activity.

  • PDF

Studies on te Myofibrillar Protein from Chicken Muscle -1. Variations in Extractability and Some Biological Activities of Actomyosin with Different Feeding Period- (닭고기의 근원섬유 단백질에 관한 연구 -1. 사양기간(飼養期間)에 따른 Actomyosin의 추출성과 ATPase 활성 비교-)

  • Gong, Yang-Suk;Park, Chang-Sik;Moon, Yoon-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.1
    • /
    • pp.77-81
    • /
    • 1985
  • It was investigated about extractability and biological property(ATPase activity) of actomyosin from skeletal muscle of chi(:ken differed feeding period. The extractabilities of actomyosin from pectoral muscle were increased from 184.5 to 1020.1 mg per 100g muscle as feeding period prolonged from 3 weeks to 8 weeks. In case of leg-muscles, extractability was revealed the similar tendency as pectoral muscles. EDTA ATPase activity of actomyosin in various chicken muscles for 3 weeks feeding was 0.6 Brmole Piimg Protein/min., 0.59 for 6 Iveeks feeding and 0.50 for 8 weeks. The Ma^{+2}$-ATPase of actomyosin in various chicken muscles was showed inverted relationship with ionic strength. EGTA ($125\;{\mu}mole$)inhibited Ma^{+2}$-ATPase activity to below $0.1\;{\mu}mole$ Pi/mg protein/min. regardless the feeding period.

  • PDF

Effects of Electrical Stimulation on the Biochemical Properties of Plaice, Paralichthys olivaceus, Sarcoplasmic Reticulum and Myofibrils (넙치 근소포체 및 근원섬유의 생화학적 특성에 미치는 전기자극의 영향)

  • KIM Tae-Jin;CHOI Young-Jun;KIM Dong-Su;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.545-552
    • /
    • 1998
  • This study was undertaken to clarify the effects of electrical stimulation on the biochemical properties of plaice sarcoplasmic reticulum and myofibrils at early period of death. The plaices were electrically stimulated (110V/60 Hz) In sea water bath for 15, 35, and 60 seconds, and killed instantly by spiking at the head. Killed samples were investigated for the changes in $Ca^{2+}$-ATPase activity of FSR (fragmented sarcoplasmic reticulum), LSR (light SR), HSR (heavy SR), and SDS-PAGE pattern of FSR. $Ca^{2+}$-ATPase activity of FSR increased until $45^{\circ}C$ and inactivated over $50^{\circ}C$. $Ca^{2+}$-ATPase activity of FSR remarkably decreased according to the duration of electrical stimulation. Myofibrillar $Mg^{2+}$-ATPase activity of electrically stimulated plaices in the presence of $Ca^{2+}$ was higher than that of sample instantly killed by spiking. $Mg^{2+}$-ATPase activity of myofibrils increased by electrical stimulation and the activity decreased during storage at $5^{\circ}C$. Myofibrillar $Mg^{2+}$-ATPase activity in sample killed by spiking was not affected by $Ca^{2+}$ ion. Myofibrillar $Mg^{2+}$-ATPase activity of electrically stimulated sample in the absen-re of $Ca^{2+}$ decreased during storage at $5^{\circ}C$, whit $Mg^{2+}$-ATPase activity in unstimulated sample did not show any change. $Ca^{2+}$-sensitivity of myofibrils showed no differences between electrically stimulated sample and sample killed by spiking, and the was no change during at $5^{\circ}C$.

  • PDF

Characteristics of Myofibrillar Protein Extracted Leg and Breast Muscles of Dog Meat (개고기 다리와 가슴 근육에서 추출한 근원섬유 단백질의 특성)

  • Park Kyung-Sook;Youn Dong-Hwa;Jung In-Chul
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.4
    • /
    • pp.453-457
    • /
    • 2006
  • This study investigated the extractability, solubility, Mg$^{2+}$-, Ca$^{2+}$- and EDTA-ATPase activity of actomyosin prepared from leg and breast muscle of dog meat. The actomyosin extractability of breast muscle(2,100.6 mg/l00 g) was higher than that of leg muscle(500.8 mg/l00 g). The Mg$^{2+}$-ATPase activity of actomyosin had a high ionic strength of 0.02$\sim$0.05 M KCI and did not differ between leg and breast muscle. The Ca$^{2+}$-ATPase activity of actomyosin had a high ionic strength of 0.02$\sim$0.10 M KCI and leg muscle had a higher level of Ca$^{2+}$-ATPase activity than breast muscle did. The EDTA-ATPase activity was lower in low ionic strength and showed higher in high ionic strength, and increased sharply with increasing ionic strength up to 0.3 M KCI. The solubility of actomyosin did not differ between leg and breast muscle, and the solubility started and ended at KCI concentrations of 0.35 M and 0.4 M, respectively.

  • PDF

Studies on the Myofibrilar Protein from Korean Duck Muscle (오리고기의 근원섬유 단백질에 관한 연구)

  • Chang, In-Yae;Nam, Hyun-Keun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.9 no.1
    • /
    • pp.45-50
    • /
    • 1980
  • Myofibrilar Protein from Korean Duck Muscle was extracted and ATPase activities were studied. The results were as follows: 1. Mg-activated ATPase activity of Myofibril from Korean Duck, muscle exhibited a biphasic response, ATPase activity was high at a low ionic strength and low activity was showed at high ionic strength. 2. Effect of EDTA on the Myofibrillar protein ATPase activity was studied, it was investigated that the EDTA inhibition was showed at the concentration of $6.9{\mu}g$ and it above. 3. It showed that the effect of Ca++ on ATPase activity was decreased at the lower than $3{\mu}g$. Inhibition showed at the concentration of $6.9{\mu}g$ and it above. 4. It showed that the effect of Mg++ on ATPase activity was decreased at the lower than $3.6{\mu}g$. Inhibition showed at the concentration of $3.9{\mu}g$ and it above.

  • PDF

Study on the Role of Metal ions for the Activity of the Mitochondrial $F_1-ATPase$ in Lentinus edodes (표고버섯의 Mitochondrial $F_1-ATPase$ 활성도에 미치는 금속이온의 역할에 관한 연구)

  • Park, Sang-Shin;Min, Tae-Jin
    • The Korean Journal of Mycology
    • /
    • v.22 no.2
    • /
    • pp.122-129
    • /
    • 1994
  • The role of metal ions for the activity of the mitochondrial $F_1-ATPase$ was studied. Removal of non-heme iron ion from the mitochondria by dialysis against chelating agents, 10 mM ethylenediaminetetraacetic acid(EDTA) and 10 mM o-phenanthroline(o-Phe), led to 56% and 49% inactivation of the enzyme, respectively. The enzyme dialyzed against EDTA was reactivated 81% by the addition of 0.5 mM $Fe^{3+}$ and 70% by 0.5 mM $Mg^{2+}$. But, $Fe^{2+}$ did not reactivate the enzyme. Coexistence of 0.5 mM $Fe^{2+}$ and 0.5 mM $Mg^{2+}$ resulted in 95% reactivation of the enzyme, while $Fe^{3+}$ with 0.5 mM $Mg^{2+}$ did not reactivate the enzyme like the effect of $Fe^{2+}$ alone. The enzyme dialyzed against o-Phe showed the similar results. These data showed that $Fe^{3+}$ is predominantly required for the activity of the mitochondrial $F_1-ATPase$ in Lentinus edodes and stimulated the activity of it by $Mg^{2+}$. $Fe^{3+}$ and $Mg^{2+}$ increased enzyme's affinity for substrate, decreasing the Km value 1.67 mM to 0.65 mM.

  • PDF