• Title/Summary/Keyword: $Mg^{2+}$ ion

Search Result 1,430, Processing Time 0.042 seconds

Characterization of a Novel Fibrinolytic Enzyme Produced from Bacillus subtilis BK-17 (Bacillus subtilis BK-17 유래 혈전용해 효소의 특성)

  • Hyun Bek;Lim Hak-Seob;Chung Kyung Kae;Choi Yung Hyun;Choi Byung Tae;Seo Min-Jeong;Kim Ji-Eun;Ryu Eun-Ju;Huh Man Kyu;Joo Woo Hong;Jeong Young Kee
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.987-993
    • /
    • 2005
  • A bacterium, producing a fibrinolytic enzyme, was screened from a decaying rice plant. The bacterium was identified as Bacillus subtilis by morphological, biochemical, and physiological properties and named Bacillus subtilis BK-17. The fibrinolytic enzyme (BK) was purified from supernatant of Bacillus subtilis BK-17 culture broth. The molecular weight was 31 kDa as determined by SDS-PAGE. The effect of temperature, pH, and plasminogen on the activity of the bacillokinase (BK) was analysed and the activity was compared with urokinase. The optimal temperature and pH were $50^{circ}C$ and pH 7, pH 8, respectively. The BK activity was inhibited to $45\%$, $35\%$, and $23\%$ with 1mM EDTA, $Zn^{2+}$, and $Ca^{2+}$, respectively. However, $Mg^{2+}$, $Mn^{2+}$, and $Co^{2+}$ ions did not have any significant effect on the enzyme activity The BK showed the artivity in the both plates, plasminogen-free fibrin plate and plasminogen-rich fibrin plate. The result indicates that the BK can directly act the fibrin. In comparison of fibrinolytic activity with urokinase on the fibrin plate, the BK shows about 20 folds higher activity than that of the urokinase.

Extrafetal Transfer of $Li^{+}$ in Amniotic Fluid of Pregnant Rabbits (토끼에서 태자를 통하지 않은 양수내 $Li^{+}$의 이동)

  • Kim, Young-Jae;Ho, Won-Kyung;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.27-37
    • /
    • 1990
  • The extrafetal transfer of $Li^{+}$ in amniotic fluid was studied in 45 pregnant rabbits. LiCl solution was administered either intravenously to mother or directly into the amniotic sac and monitored the appearance and disappearance of $Li^{+}$ in the amniotic fluid, then calculated the transfer rate of $Li^{+}$ of extrafetal origin. To study the transplacental $Li^{+}$ transfer, a solution of 150 mM LiCl was infused continuously via maternal vein (initial dose: 0.7 mmol/kg, maintaining dose: 0.03 mmol/kg/min) and the $Li^{+}$ concentration was measured in maternal blood and amniotic fluid after 60 and 120 minutes of infusion. Change in the volume of aminotic fluid was determined by Congo red dilution method at the same time. Effects of duration of gestation was not considered in this study. Extrafetal transport of $Li^{+}$ into the amniotic fluid was estimated by comparing the $Li^{+}$ concentration and volume of amniotic fluid determined before and after ligating the placental vessels. Extrafetal $Li^{+}$ transport from the amniotic fluid was determined by observing the time dependent disappearance of $Li^{+}$ and Congo red in amniotic fluid after injecting 0.5 ml solution of 15 mM or 90 mM LiCl and 50 mg/ml Congo red. Following are the results obtained: 1) During infusion of LiCl through maternal vein the ratio of the aminotic $Li^{+}$/maternal plasma $Li^{+}$ increased significantly along with the increment of fetal weight. 2) The volume of amniotic fluid of larger fetuses than 20.5 gm increased significantly during administration of LiCl while that of smaller fetuses did not change. 3) After umbilical cord ligation the $Li^{+}$ concentration of amniotic fluid of larger fetuses than 20.5 gm was decreased to $59.9{\pm}10.3%$ and $56.9{\pm}42.9%$ $(mean{\pm}S.D.)$ of those of control group after 60 and 120 minutes of LiCl infusion respectively. In amniotic fluid of smaller fetuses than 20.5 gm, there was no significant difference between control and ligation groups. 4) The disappearance rate of Congo red in the amniotic fluid was $45.2{\pm}8.2%/hr$. 5) The disappearance rate of $Li^{+}$ after intraamniotic injection of LiCl depended on the amount injected. On injecting $7.5\;{\mu}mol$ LiCl, $Li^{+}$ disappeared rapidly from the amniotic fluid and the rates after 60 min and 90 min were $97.0{\pm}2.8,\;98.5{\pm}2.0%$ respectively. On injecting $45\;{\mu}mol$ LiCl, the rates were $56.0{\pm}15.4,\;78.9{\pm}14.5%$ at 60 and 90 min. 6) From the above results it was concluded: a) $Li^{+}$ transfer into the amniotic fluid increased along with the fetal growth and one half of $Li^{+}$ influx is through the extrafetal route even after the maturation of fetal kidney. b) One half of the $Li^{+}$ transfer from the amniotic fluid was through swallowing of fetus, while the remaining half was transfered rapidly through amniotic membrane, which was concentration limited.

  • PDF

Fusarium moniliforme Detected in Seeds of Corn and Its Pathological Significance (옥수수 종자(種子)에서 검출(檢出)된 Fusarium moniliforme와 그 병리학적(病理學的) 중요성(重要性))

  • Kim, Wan-Gyu;Oh, In-Seok;Yu, Seung-Hun;Park, Jong-Seong
    • The Korean Journal of Mycology
    • /
    • v.12 no.3
    • /
    • pp.105-110
    • /
    • 1984
  • Seven seed samples of corn obtained from Kangweon Provincial Office of Rural Development, Kerea were tested for seed-borne fungi, and found that all the samples tested were infected with Fusarium moniliforme to an extent of $6.0{\sim}79.5%$. Severely infected seed samples showed poor germination on blotter. Seed component plating showed that the fungus present not only in tip caps, pericarps and endosperms, but also in embryos. Heavy infection of the fungus caused severe seed rot and seedling blight in soil, but the damage was not severe and many plants grew without any symptoms when the seeds with light infection were sown in soil. However the fungus was frequently detected from inside of the stems of healthy looking seedlings. The results indicate that the fungus transmit from seed to plant systemically. In inoculation experiments, the fungus produced stem rots on corn plants of 110 days old. The cultivar of Hwangok 3 was revealed more susceptible to the fungus than that of Suweon 19.

  • PDF

Characteristics of Lactate Dehydrogenase Produced from Lactobacillus sp. FFy111-1 as a Ruminant Probiotic (반추동물용 활성제로서 Lactobacillus sp. FFy111-1이 생산한 Lactate Dehydrogenase의 특성에 관한 연구)

  • Sung, H.G.;Kim, D.K.;Bae, H.D.;Shin, H.T
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.625-634
    • /
    • 2004
  • The objective of this experiment is to study the possibility of lactate dehydrogenase(LDH) enzyme to prevent lactate accumulation in the rumen, For understanding capacity of bacterial LDH in rumen environments, this study was conducted to explore the effects of temperature, pH, VFAs and metal ions on Lactobacillus sp. FFy111-1's LDH activity, and the LDH activation in rumen fluid accumulated lactate. The optimum pH and temperature of LDH were pH 7.5 and 40$^{\circ}C$, respectively. The LDH activity had a good thennostability at range from 30 to 50$^{\circ}C$. The highest pH stability of the enzyme was at ranges from pH 7.0 to 8.0 and the enzyme activities showed above 64% level of non-treated one at pH 6.0 and 6.5. The LDH was inactivated by VFAs treatments but was enhanced by metal ion treatments without NaCl and $CuSO_4$ Especially, the LDH activity was increased to 127% and 124% of its original activity by 2 mM of $BaCl_2$ and $MnSO_4$, addition, respectively. When the acidic rumen fluid was treated by LDH enzyme of Lactobacillus sp. FFy111-1, the lactate concentration in the rumen fluid was lower compared with non-treated rumen fluid(P<0.05). This lactate reduction was resulted from an action of LDH. It was proved by result of purified D,L-LDH addition that showed the lowest lactate concentration among the treatments(P<0.05). Although further investigation of microbial LDH and ruminal lactate is needed, these findings suggest that the bacterial LDH has the potential capability to decrease the lactate accumulated in an acidic rumen fluid. Also, screening of super LDH producing bacteria and technical development for improving enzyme activity in rumen environment are essential keys for practical application.

Relationships between Fatty Acids and Tocopherols of Conventional and Genetically Modified Peanut Cultivars Grown in the United States (미국산 전통품종과 유전자 재조합 땅콩품종의 지방산과 토코페롤의 상관관계)

  • Shin, Eui-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1618-1628
    • /
    • 2013
  • Relationships between fatty acids and tocopherols in conventional and genetically modified peanut cultivars were studied by gas chromatography with flame ion detector and high performance liquid chromatography with fluorescence detection. Eight fatty acids and four tocopherol isomers in the sample set were identified and quantified. Oleic acid and linoleic acid are major fatty acids and the ratio of oleic and linoleic acids ranged from 1.11 to 16.26. Tocopherols contents were 6.76 to 12.24 for ${\alpha}$-tocopherol (T), 0.08 to 0.39 for ${\beta}$-T, 5.28 to 15.02 for ${\gamma}$-T, and 0.17 to 1.17 mg/100 g for ${\delta}$-T. Correlation coefficient (r) for fatty acids and tocopherols indicated a strong inverse relationship between oleic & linoleic acids (r=-0.97, P<0.05) and positive relationships between palmitic & linoleic acids (r=0.95, P<0.05) and ${\gamma}$-T & ${\delta}$-T (r=0.83, P<0.05). Principal component analysis (PCA) of fatty acids and tocopherols gave four significant principal components (PCs, with eigenvalues>1), which together account for 85.49% of the total variance in the data set with PC1 and PC2 contributing 45.27% and 21.33% of the total variability, respectively. Eigen analysis of the correlation matrix loadings of the four significant PCs revealed that PC1 was mainly contributed by palmitic, oleic, linoleic, and gondoic acids, while PC2 was by behenic acid, ${\beta}$-T, and ${\gamma}$-T. The score plot generated by PC1-PC2 identified sample clusters in the two spatial planes based on the oleic and linoleic acids. The score plot PC3-PC4 didn't separate sample groups.

Analysis on the Relation between the Morphological Physical and Chemical Properties of Forest Soils and the Growth of the Pinus koraiensis Sieb. et Zucc. and Larix leptolepis Gord by Quantification (수량화(數量化)에 의(依)한 우리나라 삼림토양(森林土壤)의 형태학적(形態学的) 및 이화학적(理化学的) 성질(性質)과 잣나무 및 낙엽송(落葉松)의 생장(生長) 상관분석(相關分析))

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.53 no.1
    • /
    • pp.1-26
    • /
    • 1981
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in sccordance with multi-variate analysis. 2. Test species, japanese larch (Larix leptolepis Gord) and the Korean white pine, (pinus koraiensis S et Z.) are plantable in extensive areas from mid to north in the temperate forest zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are little known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth, but, when Japanese larch is planted in Korean white pine site it can be hardly said that the Japanese Larch growth is good. To understand on such a difference soil factors have been studied so as to see how th soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 Japanese larch plots and 259 Korean white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analyses of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the decreasing order of weight deposit form, soil depth, soil moisture, altitude, relief, soil type, depth a A-horizon, soil consistency, content of organic matter, soil texture, bed rock, gravel content, aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency, bed rock, aspect, depth of A-horizon, soil moisture, altitude, relief, deposit form, soil depth, soil texture, gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of base saturation, organic matter, CaO, C/N ratio, effective $P_2O_5$, PH, exchangeable, $K_2O$, T-N, MgO, CEC, Total Base and Na. For the Korean white pine the influencing factors' order is effective $P_2O_5$, Total Base, T-N, Na, C/N ratio, PH, CaO, base saturation, organic matter, exchangeable $K_2O$, CEC and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of soil depth, deposit form, soil moisture, PH, relief, soil type altitude, T-N, soil consistency, effective $P_2O_5$, soil texture, depth of A-horizon, Total Base, exchangeable $K_2O$ and base saturation. For the Korean white pine the influencing factors' order is soil type, soil consistency, aspect, effective $P_2O_5$, depth of A-horizon, exchangeable $K_2O$, soil moisture, Total Base, altitude, soil depth, base saturation, relief, T-N, C/N ratio and deposit form. 7. In the multiple correlation of forest soil's physical properties larch's correlation coefficient for Japanese Larch is 0.9272 and for Korean white pine, 0.8996. With chemical properties larch has 0.7474 and Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properities are not less important than the physical properties. In the multiple correlation of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients Japanese larch needs deeper soil depth than Korean white pine and in the deposit form of colluvial and creeping soils are demanded by the larch. Moderately moist to not moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N, soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief, soil moisture, PH, N, altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variations as plantation environments. For the larch siting soil depth, deposit form, relief, soil moisture, pH, soil type, N and soil texture are indicators of good growth and for the Korean white pine they are soil type, soil consistency, effective $P_2O_5$ and exchangeable $K_2O$. In soil nutrients larch has been found out demanding more than the Korean white pine except $K_2O$, which is demanded more by the Korean white pine than Japanese larch generally. 9. Physical properties of soil has been known as affecting tree growth to the greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for the Japanese larch and the Korean white pine that have been uncertain so far could be clarified.

  • PDF

Development and Validation of Analytical Method for Determination of Fungicide Spiroxamine Residue in Agricultural Commodities Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살균제 Spiroxamine의 시험법 개발 및 검증)

  • Park, Shin-Min;Do, Jung-Ah;Lim, Seung-Hee;Yoon, Ji-Hye;Pak, Won-Min;Shin, Hye-Sun;Kuk, Ju-Hee;Chung, Hyung-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.296-305
    • /
    • 2018
  • Spiroxamine, one of fungicides, is used to control powdery mildew in various crops and black yellow sigatoka in bananas. The major strength of spiroxamine is to control powdery mildew in various crops and bananas yellow sigatoka in bananas. The compound has shown a high level of activity, good persistence and crop tolerance. Besides powdery mildew, good control of rust, net blotch and Rhynchosporium diseases been indicated in cereals, together with a complementary activity against Septoria diseases. In 2017, the maximum residue limit (MRL) of spiroxamine established in Korea. According to Ministry of ood and rug afety) regulations, spiroxamine residues defined only parent compound. Thus, a analytical method is needed to estimate the residue level of the parent compound. The objective of this study was to develop and validate analytical method for spiroxamine in representative agricultural commodities. Samples were extracted with acetonitrile and partitioned with dichloromethane to remove the interfering substances. The analyte were quantified and confirmed liquid chromatograph-tandem mass spectrometer (LC-MS/MS) in positive-ion mode using multiple reaction monitoring (MRM). Matrix matched calibration curves were linear over the calibration ranges ($0.0005{\sim}0.1{\mu}g/mL$) for the analyte in blank extract with coefficient of determination ($r^2$) > 0.99. For validation purposes, recovery studies will be carried out at three different concentration levels (LOQ, 10LOQ, and 50LOQ) performing five replicates at each level. The recoveries 70.6~104.6% with relative standard deviations (RSDs) less than 10%. All values were consistent with the criteria ranges in the Codex guidelines (CAC/GL40, 2003) and MFDS guidelines. proposed analytical method be used as an official analytical method in the Republic of Korea.

Characterization of Cement Solidification for Enhancement of Cesium Leaching Resistance (세슘 침출 저항성 증진 시멘트 고화체의 제조 및 특성 평가)

  • Kim, Gi Yong;Jang, Won-Hyuk;Jang, Sung-Chan;Im, Junhyuck;Hong, Dae Seok;Seo, Chel Gyo;Shon, Jong Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.183-193
    • /
    • 2018
  • Currently, the Korea Atomic Energy Research Institute (KAERI) is planning to build the Ki-Jang Research Reactor (KJRR) in Ki-Jang, Busan. It is important to safely dispose of low-level radioactive waste from the operation of the reactor. The most efficient way to treat radioactive waste is cement solidification. For a radioactive waste disposal facility, cement solidification is performed based on specific waste acceptance criteria such as compressive strength, free-standing water, immersion and leaching tests. Above all, the leaching test is important to final disposal. The leakage of radioactive waste such as $^{137}Cs$ causes not only regional problems but also serious global ones. The cement solidification method is simple, and cheaper than other solidification methods, but has a lower leaching resistance. Thus, this study was focused on the development of cement solidification for an enhancement of cesium leaching resistance. We used Zeolite and Loess to improve the cesium leaching resistance of KJRR cement solidification containing simulated KJRR liquid waste. Based on an SEM-EDS spectrum analysis, we confirmed that Zeolite and Loess successfully isolated KJRR cement solidification. A leaching test was carried out according to the ANS 16.1 test method. The ANS 16.1 test is performed to analyze cesium ion concentration in leachate of KJRR cement for 90 days. Thus, a leaching test was carried out using simulated KJRR liquid waste containing $3000mg{\cdot}L^{-1}$ of cesium for 90 days. KJRR cement solidification with Zeolite and Loess led to cesium leaching resistance values that were 27.90% and 21.08% higher than the control values. In addition, in several tests such as free-standing water, compressive strength, immersion, and leaching tests, all KJRR cement solidification met the waste acceptance or satisfied the waste acceptance criteria for final disposal.

Development and Validation of an Analytical Method for Fungicide Sedaxane Determination in Agricultural Products using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살균제 Sedaxane의 잔류시험법 개발 및 검증)

  • Cho, Sung Min;Do, Jung-Ah;Park, Shin-Min;Lee, Han Sol;Park, Ji-Su;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.30-39
    • /
    • 2019
  • An analytical method was developed for the determination of sedaxane in agricultural products using liquid chromatograph-tandem mass spectrometry (LC-MS/MS). The samples were extracted with acetonitrile and partitioned with dichloromethane to remove the interference, and then purified by using silica SPE cartridges to clean up. The analytes were quantified and confirmed by using LC-MS/MS in positive ion mode using multiple reaction monitoring (MRM). The matrix-matched calibration curves were linear over the calibration ranges ($0.001-0.25{\mu}g/mL$) into a blank extract with $r^2$>0.99. For validation, recovery tests were carried out at three different concentration levels (LOQ, 10LOQ, and 50LOQ, n=5) with five replicates performed at each level. The recoveries were ranged between 74.5 to 100.8% with relative standard deviations (RSDs) of less than 12.1% for all analytes. All values were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40, 2003) and Food Safety Evaluation Department guidelines (2016). The proposed analytical method was accurate, effective and sensitive for sedaxane determination in agricultural commodities.

Studies on the Morphological, Physical and Chemical Properties of the Korean Forest soil in Relation to the Growth of Korean White Pine and Japanese Larch (한국산림토양의 형태학적 및 이화학적성질과 낙엽송, 잣나무의 성장(成長)에 관한 연구(硏究))

  • Chung, In-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.4
    • /
    • pp.189-213
    • /
    • 1980
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in accordance with multi-variate analysis. 2. Test species, larch and the Korean white pine, are plantable in extensive areas from mid to north in the temperate zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are not known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth. But, when larch is planted in the Korean white pine site it can be hardly said that the larch growth is good. To understand on such a difference soil factors have been studied so as to see how the soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 larch plots and 259 white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analysis of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/chemical properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of deposit form, soil depth, soil moisture, altitude, relief, soil type, depth of A-horizon, soil consistency content of organic matter soil texture bed rock gravel content aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency bed rock aspect depth of A-horizon soil moisture altitude relief deposit form soil depth soil texture gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of base saturation organic matter CaO C/N ratio, effective $P_2O_5$ PH.exchangeable $K_2O$ T-N MgO C E C Total Base and Na. For the Korean white pine the influencing factors' order is effective $P_2O_5$ Total Base T-N Na C/N ratio PH CaO base saturation organic matter exchangeable $K_2O$ C E C and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of soil depth deposit form soil moisture PH relief soil type altitude T-N soil consistency effective $P_2O_5$ soil texture depth of A-horizon Total Base exchangeable $K_2O$ and base saturation. For the Korean white pine the influencing factors' order is soil type soil consistency aspect effective $P_2O_5$ depth of A-horizon exchangeable $K_2O$ soil moisture Total Base altitude soil depth base saturation relief T-N C/N ratio and deposit from. 7. In the multiple regression of forest soil's physical properties larch's correlation coefficient is 0.9272 and for the Korean white pine it is 0.8996. With chemical properties larch has 0.7474 and the Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properties are not less important than the physical properties. In the multiple regression of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for the Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients larch needs deeper soil depth than the Korean white pine and in the deposit form colluvial and creeping soils are demanded by the larch. Adequately moist to too moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief soil moisture PH N altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variation as plantation environments. For larch siting soil depth deposit form relief soil moisture PH soil type N and soil texture are indicators of good growth and for Korean white pine they are soil type soil consistency effective $P_2O_5$ and exchangeable $K_2O$, which is demanded more by the Korean white pine than larch generally. 9. Physical properties of soil has been known as affecting tree growth to greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for larch and the Korean white pine that have been uncertain So far could be clarified.

  • PDF