• Title/Summary/Keyword: $MIEX^{(R)}$

Search Result 4, Processing Time 0.015 seconds

Effects of magnetic ion exchange resin with PACI coagulation on removal of natural organic matter and MF fouling (자성체 이온교환 수지와 PACI 응집에 의한 국내 주요 수계 내 자연유기물 제거 특성 및 막오염 저감 효과)

  • Choi, Yang Hun;Jeong, Young Mi;Kim, Young Sam;Lee, Seung Ryul;Kweon, Ji Hyang;Kwon, Soon Buhm
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.131-140
    • /
    • 2008
  • The application of magnetic ion exchange resin($MIEX^{(R)}$) is effective for natural organic matter(NOM) removal and for control of the formation of disinfection byproducts(DBPs). NOM removal is also enhanced by adding $MIEX^{(R)}$ with coagulant such as polyaluminium chloride(PACl) in conventional drinking water treatment systems. In the application of $MIEX^{(R)}$, it is important to understand changes of NOM characteristics such as hydrophobicity and molecular weight distributions with $MIEX^{(R)}$ or $MIEX^{(R)}$+coagulant treatment.To observe characteristics of NOM by treatment with $MIEX^{(R)}$ or $MIEX^{(R)}$+coagulant, four major drinking water sources were employed. Results showed that the addition of $MIEX^{(R)}$ to coagulation significantly reduced the amount of coagulant required for the optimum removal of dissolved organic matter(DOC) and turbidity in the all four waters. The DOC removal was also increased approximately 20%, compared to coagulant treatment alone. The process with $MIEX^{(R)}$ and coagulant showed that complementary removal of hydrophobic and hydrophilic fraction of DOC. The combined processes preferentially removed the fractions of intermediate (3,000-10,000 Da) and low (< 500 Da) molecular weight. The microfiltration test showed that membrane cake resistance was decreased for waters with flocs from $MIEX^{(R)}$+coagulant. A porous layer was formed to $MIEX^{(R)}$ on the membrane surface and the layer consequently inhibited settling of coagulant flocs, which could act on a foulant.

Effect of Pretreatment Process on Hybrid Membrane Filtration Performance (원수의 물리.화학적 특성에 따른 막 분리 공정의 전처리 공정 적용성 평가)

  • Jung, Chul-Woo;Son, Hee-Jong;Bae, Sang-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this research are to evaluate the effect of membrane materials, particulate matter and membrane pore size on permeate flux. It was shown that the removal efficiency of high MW organic matter more than 10 kDa was lower than that of low MW organic matter for $MIEX^{(R)}$ process. For the change of permeate flux by the pretreatment process, $MIEX^{(R)}+UF$ process showed high removal efficiency of organic matter as compared with coagulation+UF processes, but high reduction rate of permeate flux was presented through the reduction of removal efficiency of high MW organic matter. The pretreatment of the raw water significantly reduced the fouling of the hydrophilic membrane, but did not decrease the flux reduction of the hydrophobic membrane. Flux decline on MF process increased due to the pore clogging, while the permeate flux decline of UF process decreased due to the formation of cake layer. It was shown that particle matter was not effect on MIEX+membrane process. But, for coagulation+membrane process, particle matter was important factor on permeate flux.

Optimization of Ultrafiltration Process using $MIEX^{(R)}$+Coagulation Process ($MIEX^{(R)}$+응집공정을 이용한 한외여과 공정의 최적화 : 다양한 전처리 공정의 적용에 따른 막 오염 현상 규명)

  • Son, Hee-Jong;Hwang, Young-Do;Roh, Jae-Soon;Jung, Chul-Woo;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.753-761
    • /
    • 2005
  • In this study, pretreatment of organic matters with $MIEX^{(R)}$ was evaluated using bench-scale experimental procedures on four organic matters to determine its effect on subsequent UF membrane filtration. For comparison, coagulation process was also used as a pretreatment of UF membrane filtration. Moreover, the membrane fouling potential was identified using different fractions and molecular weights of organic matters. From the removal property of MW organic matters by coagulation process for the sample water NOM and AOM, the removal efficiency of high MW organic matters were much higher than those of low MW organic matters. It was shown that the removal efficiency of high MW organic matter more than 10 kDa was lower than that of low MW organic matter for $MIEX^{(R)}$ process. For the change of permeate flux by the pretreatment process, $MIEX^{(R)}$+UF process showed high removal efficiency of organic matter as compared with coagulation-UF processes, but high reduction rate of permeate flux was presented through the reduction of removal efficiency of high MW organic matter. From sequential filtration test results in order to examine the effect of MW of organic matter on membrane fouling, it was found that the membrane foulant was occurred by high MW organic matter, and the DOC of organic matter less than 0.5 mg/L was working as the membrane foulant. In the case of sample water composed of low MW organic matter less than 10 kDa, since the low MW organic matter less than 10 kDa has high removal efficiency by $MIEX^{(R)}$, low reduction rate of permeate flux is obtained as compared with coagulation-UF processes. In summary, it is required to conduct the research on physical/chemical characteristic of original water before pretreatment process of membrane process is selected, and a pertinent pre-treatment process should be employed based on the physical/chemical characteristic of original water.

Characteristics of Removal of Perfluorinated Compounds (PFCs) Using Magnetic Ion Exchange Resin (MIEX®) in Water (자성체 이온교환수지(MIEX®)를 이용한 수중의 과불화화합물(PFCs) 제거 특성)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Kim, Kyung-A;Ryu, Sang-Weoun;Kwon, Ki-Won
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.1009-1017
    • /
    • 2013
  • Perfluorooctanoic acid (PFOA) and perfluorooctyl sulfonate (PFOS) is a new persistent organic pollutants of substantial environmental concern. This study investigated the potential of magnetic ion exchange resin (MIEX$^{(R)}$) as the adsorbent for the removal of PFOA and PFOS from Nakdong River water. In our batch experiments, we studied the effect of some parameters (pH, temperature, sulfate concentration) on the removal of PFOA and PFOS. The results of sorption kinetics on MIEX$^{(R)}$ show that it takes 90 min to reach equilibrium but the economical contact time and dosage were 30 min and 10 mL/L. An increase in pH (pH 6~10) leads to a decrease in PFOA (2.0%) and PFOS (3.6%) sorption on MIEX$^{(R)}$. The sorption of both PFOA and PFOS decreases with an increase in ionic strength for sulfate ion (${SO_4}^{2-}$), due to the competition phenomenon. An increase in water temperature ($8^{\circ}C{\sim}28^{\circ}C$) in water leads to a increase in PFOA (2.8%) and PFOS (4.3%) sorption on MIEX$^{(R)}$. Based on the sorption behaviors and characteristics of the adsorbents and adsorbates, ion exchange and hydrophobic interaction were deduced to be involved in the sorption, and hemi-micelles possibly formed in the intraparticle pores.