• Title/Summary/Keyword: $Li_2S$ film

Search Result 100, Processing Time 0.032 seconds

A study on the sintering condition and Electric properties of BST thick film (BST Tunable 후막 유전체의 소결과 유전 특성엘 관한 연구)

  • Kim, I.S.;Min, B.K.;Song, J.S.;Jeon, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2013-2015
    • /
    • 2005
  • In this paper, Effect of $BaSrTiO_3/Li_2CO_3$ on low temperature sintering and dielectric property of thick films has been investigated for variable capacitor on high frequency. The thick films were fabricated by the tape casting and then the structural and dielectric properties as a function of an addition composition ratio and sintering temperature were studied. For the thick film sintered at $1050^{\circ}C$, it was densified to 96% of $BaSrTiO_3$ theoretical density by the addition of 10 $wt{\cdot}%$ $BaSrTiO_3/Li_2CO_3$. Dielectric constant increased and Curie temperature lowered with the increased of $BaSrTiO_3/Li_2CO_3$ content, which probably can be explained by the substitution of $Ba^{3+},Li^{1+}$ on $RaTiO_3$ lattice. The tunability and dielectric loss of the $BaSrTiO_3/Li_2CO_3$ thick film, sintered at $1350^{\circ}C$, were about 26% and 0.234 at $10{\sim}15MHz$, respectively.

  • PDF

Fabrication and charaterization of $RuO_2$based thin film supercapacitor ($RuO_2$박막을 이용한 박막 슈퍼캐패시터의 제작 및 분석)

  • 임재홍;최두진;전은정;남성철;조원일;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.920-923
    • /
    • 2000
  • All solid-state thin film supercapacitor(TFSC) based on $RuO_2$ electrode was fabricated. Ruthenium oxide$(RuO_2)$ thin film was deposited on Pt/Ti/Si subsrate by d.c. magnetron sputtering. LiPON(lithium phosphorus oxynitride) thin film were deposited by r.f. reactive sputtering. X-ray diffraction patterns of $RuO_2$ and LiPON films revealed that crystal structures of both films were amorphous. To decrease resistivity of $RuO_2$ thin film, $RuO_2$ thin film was deposited with $H_2O$ vapor. In order to decide the maximum ionic conductivity, the LiPON films were prepared by various sputtering condition. The maximum ionic conductivity was $9.5\times{10}^7S/cm$. A charge-discharge measurements showed the capacity of $3\times{10-2}\;F/cm^2-\mu{m}$ for the as-fabricated TFSC. The discharging efficiency was decreased after 500 cycles by 40 %.

  • PDF

Charge/discharge characteristics of $LiCoO_2$ thin film prepared by electron-beam evaporation with deposition rate and annealing temperatures (Electron-beam 증발법으로부터 증착속도 및 열처리 온도에 따른 $LiCoO_2$ 박막의 충방전 특성)

  • Nam S. C.;Cho W. I.;Cho B. W.;Yun K. S.;Chun H. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.46-49
    • /
    • 1999
  • Lithium cobalt oxide cathode for thin-film rechargeable lithium batteries were fablicated by electron-beam evaporation. Annealed lithium cobalt oxide, which was deposited on to stainless steel substrate, showed well-developed (003) planes of the hexagonal structure and potential plateau at $\~3.9 V$. Lithium cobalt oxide thin films had the stoichiometric Li/co ratio at high deposition rates and exhibited high discharge capacity at $15{\AA}/s$. As the annealing temperature increased, discharge capacity increased with maximum value at $700^{\circ}C$, but showed low capacity as a result of reaction with substrate above $700^{\circ}C$. Unuiformity of the lithium and cobalt in the depth profile gave initial capacity loss with charge/discharge performance.

Electrochemical Characteristics of $V_2O_5$ based All Solid State Thin Film Microbattery by Ex-situ Sputtering Method (Ex-situ 스퍼터링법에 의한 $V_2O_5$ 전 고상 박막전지의 전기화학적 특성)

  • Lim Y.C.;Nam S.C.;Jeon E.J.;Yoon Y.S.;Cho W.I.;Cho B.W.;Chun H.S.;Yun K.S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.44-48
    • /
    • 2000
  • Amorphous $V_2O_5$ cathode thin films were prepared by DC-magnetron sputtering at room temperature and the thin film rechargeable lithium batteries were fabricated with the configuration of $V_2O_5/LIPON/Li$ using sequential ex-situ thin film deposition techniques. The electrochemical characteristics of $V_2O_5$ cathode materials Prepared at 80/20 of $Ar/O_2$ ratio showed high capacity and cycling behaviors by half cell test. LIPON solid electrolytes films were prepared by RF-magnetron sputtering using the self-made $Li_3PO_4$ target in pure $N_2$ atmosphere, and it was very stable for lithium contact in the range of 1.2-4.0 V vs. Li. Metallic lithium were deposited on LIPON electrolyte by thermal evaporation methode in dry room. Vanadium oxide based full cell system showed the initial discharge capacity of $150{\mu}A/cm^2{\mu}m$ in the range of $1.2\~3.5V$.

RF Sputtered Lithium Nickel Oxide Films and Their Electrochromism (RF 스퍼터링에 의해 제조된 Li-Ni-O 박막의 전기변색 특성)

  • Kim, Young-Il;Kim, Bae-Whan;Choy, Jin-Ho;Campet, Guy;Park, Nam-Gyu;Portier, Josik;Morel, Bertrand
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.11
    • /
    • pp.594-599
    • /
    • 1997
  • Lithium nickel oxide ($Li_{2x}Ni_{1-x}O$) thin films have been prepared by the RF sputtering of lithiated nickel oxide target, where the film microstructure was controlled by the sputtering atmosphere $(Ar/O_2)$ and the substrate temperature ($T_s=50/230^{\circ}C$). From the transmission electron microscopic analysis, it is found that the most porous film with the grain size of $∼80\AA$ could be fabricated under the sputtering atmosphere of $P(O_2)=8{\times}10^2$ mbar with the $$T_s$=50^{\circ}C.$ In the optical and electrochemical studies, the$Li_{2x}Ni_{1-x}O$ films exhibit a significant electrochromic property in association with the lithium insertion/deinsertion process. The amount of charge insertion ($Q_i$) and the optical density (OD) variation depend on the crystallinity of the film as well as its thickness, and for the $Li_{2x}Ni_{1-x}O$ film (170 nm thickness) prepared under $O_2$ atmosphere and $T_s=50^{\circ}C$, the OD could be increased up to ∼1.3 by the charge insertion with $Q_i=30\;mC/cm^2.$

  • PDF

Electrode Properties of Thin Film Battery with LiCoO2 Cathode Deposited by R.F. Magnetron Sputtering at Various Ar Partial Pressures (R.F. 마그네트론 스퍼터링을 이용한 LiCoO2 양극활물질의 Ar 증착분압에 따른 박막전지 전극 특성)

  • Park, H.Y.;Lim, Y.C.;Choi, K.G.;Lee, K.C.;Park, G.B.;Kwon, M.Y.;Cho, S.B.;Nam, S.C.
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.37-41
    • /
    • 2005
  • We investigated the electrochemical properties and microstructure on the various argon deposition pressure $(P_{Ar})$ and the low annealing temperature $(400^{\circ}C)$ of $LiCoO_2$ cathodes, which deposited by R.F. magnetron sputtering. The microsuucture and composition of Lico02 thin film was changed as a function of $P_{Ar}$. The capacity and electrochemical properties were improved with Ph of $LiCoO_2$ thin films. The cycling reversibility and stability of thin film batteries were measured by cyclic voltammetry and the constant current charge-discharge. The physical properties of cathode films were analyzed by ICP-AES, XRD, SEM and AFM for composition, crystallization and surface morphology.

A study on the tunning properties of BST-MgO thick film (BST-MgO 강유전체 후막의 가변 튜닝 특성에 관한 연구)

  • Kim, I.S.;Min, B.K.;Song, J.S.;Jeon, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.15-17
    • /
    • 2005
  • In this study, tunable dielectric materials are important for resonator, variable capacitor, phased array antenna and other devices application. In this paper, Dielectric constant increased and tuning range increased with the increased of $BaSrTiO_3/Li_{2}CO_{3}$ content, which probably can be explained by the substitution of Ba3+, Li1+ on BaTiO3 lattice. The tunability and dielectric loss of the $BaSrTiO_2/Li_{2}CO_{3}$ thick film, sintered at $1150^{\circ}C$, were about 43 % and 0.234 at 10$\sim$15 MHz, respectively. In case of BaSrTi/MgO, Dielectric constant decreased and tenability increased with the added of $BaSrTiO_3/MgO$. The ferroelectrics properties were distinct when adding Li to BST ceramic thick film, and paraelectrics pattern was distinct when adding Mg.

  • PDF

Effect of Doping on the Ionic Conductivity of Li$_2$Po$_{4-x}$N$_{x}$ thin Film (Li$_2$Po$_{4-x}$N$_{x}$ 박막의 이온전도도에 미치는 Ti 첨가)

  • 이재혁;이유기;박종완
    • Journal of Surface Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.255-261
    • /
    • 1997
  • Thin film batteries can be used as a micro power source for electronic in which minute power is needed. In this study, lithium phosphorous oxynitride(LIPON) thin films were deposited as an eletrolyte for lithium ion batteries using RF magentron sputtering of lithium phosphate in N2. Ti was also added into the LIPON films as a second network former to enhance the ioinc conductivity of the films. The optimum conditions for LIPON film deposition were sought and the electrolyte with the conductivity of $2.5 \times 10^{-6}$S/cm was obtained at the condition of RF power 4.4 W/$\textrm{cm}^2$, process pressure 10 mtorr and pure nitrogen ambience. Furthermore, the conductivity of LIPON films was increased from $2.5 \times 10^{-6}$S/cm to $8.6 \times 10^{-6}$S/cm by the doping of 2.4at.% Ti. It was also found that by adding Ti to LIPON films, Li content was increased and nitrogen content that reported having the cross-linking effect on LIPON films was also increased as confirmed XPS.

  • PDF

Evaluation of Electrochemical Properties of Amorphous LLZO Solid Electrolyte Through Li2O Co-Sputtering (Li2O Co-Sputtering을 통한 비정질 LLZO 고체전해질의 전기화학 특성 평가)

  • Park, Jun-Seob;Kim, Jong-Heon;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.614-618
    • /
    • 2021
  • As the size of market for electric vehicles and energy storage systems grows, the demand for lithium-ion batteries (LIBs) is increasing. Currently, commercial LIBs are fabricated with liquid electrolytes, which have some safety issues such as low chemical stability, which can cause ignition of fire. As a substitute for liquid electrolytes, solid electrolytes are now being extensively studied. However, solid electrolytes have disadvantages of low ionic conductivity and high resistance at interface between electrode and electrolyte. In this study, Li7La3Zr2O12 (LLZO), one of the best ion conducting materials among oxide based solid electrolytes, is fabricated through RF-sputtering and various electrochemical properties are analyzed. Moreover, the electrochemical properties of LLZO are found to significantly improve with co-sputtered Li2O. An all-solid thin film battery is fabricated by introducing a thin film solid electrolyte and an Li4Ti5O12 (LTO) cathode; resulting electrochemical properties are also analyzed. The LLZO/Li2O (60W) sample shows a very good performance in ionic conductivity of 7.3×10-8 S/cm, with improvement in c-rate and stable cycle performance.

Electrical and Structural Properties of $LiNbO_3/Si$ Structure by RF Sputtering Method (RF 스퍼터링법을 이용한 $LiNbO_3/Si$구조의 전기적 및 구조적 특성)

  • Lee, Sang-Woo;Kim, Kwang-Ho;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.106-110
    • /
    • 1998
  • The $LiNbO_3$ thin films were prepared directly on Si(100) substrates by conventional RF magnetron spurttering system for nonvolatile memory applications. RTA(Rapid Thermal Annealing) treatment was performed for as-deposited films in an oxygen atmosphere at 600 $^{\circ}C$ for 60 s. The rapid thermal annealed films were changed to poly-crystalline ferroelectric nature from amorphous of as-deposition. The resistivity of the ferroelectric $LiNbO_3$ film was increased from a typical value of $1{\sim}2{\times}10^8{\Omega}{\cdot}cm$ before the annealing to about $1{\times}10^{13}{\Omega}{\cdot}cm$ at 500 kV/cm and reduced the interface state density of the $LiNbO_3/Si$ (100) interface to about $1{\times}10^{11}/cm^2{\cdot}eV$. Ferroelectric hysteresis measurements using a Sawyer-Tower circuit yielded remanent polarization ($P_r$) and coercive field ($E_c$) values of about 1.2 ${\mu}C/cm^2$ and 120 kV/cm, respectively.

  • PDF