• Title/Summary/Keyword: $Li_2MnO_3$

Search Result 300, Processing Time 0.028 seconds

Electrochemical Characteristics of LiNi0.5Mn1.5O4 Spinel as 5 V Class Cathode Material for Lithium Secondary Batteries (5V급 고전압 양극 LiNi0.5Mn1.5O4 Spinel의 제조와 전기화학적 특성에 관한 연구)

  • Jeon, Sang-Hoon;Oh, Si-Hyoung;Lee, Byung-Jo;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.172-176
    • /
    • 2005
  • Recently, many researches on the high-voltage 5 V class cathode material have focused on $LiNi_{0.5}Mn_{1.5}O_4$, where $Mn^{3+}$ in the existing $LiMn_2O_4 (Li[Mn^{3+}][Mn^{4+}]O_4)$ is replaced by $Ni^{2+}(Li[Ni^{2+}]_{0.5}[Mn^{4+}]_{1.5}O_4)$ in order to utilize $Ni^{2+}/Ni^{4+}$ redox reaction in the 5V region. The partial substitution of Mn in $LiMn_2O_4$ for other transition metal element, $LiM_yMn_{1-y}O_4$(M=Cr, Al, Ni, Fe, Co, Cu, Ga etc) is known as a good solution to overcome the problems associated with $LiMn_2O_4$ like the gradual capacity fading. In this study, we synthesized $LiNi_{0.5}Mn_{1.5}O_4$ through a mechanochemical process and investigated its morphological, crystallographic and electrochemical characteristics. The results showed that 4 V peaks had been found in the cyclic volammograms of the synthesized powders due to the existence of $Mn^{3+}$ from the incomplete substitution of $Ni^{2+}$ for $Mn^{3+}$ implying that the mechanochemical activation alone was not good enough to synthesize an exact stoichiometric compound of $LiNi_{0.5}Mn_{1.5}O_4$. The synthetic condition of mechanochemical process, such as type of starting materials, ball-mill and calcination condition was optimized for the best electrochemical performance.

Properties Changing depends on Substituents or Dopants of Li-Mn oxide material (Li-Mn계 산화물의 치환 및 첨가에 따른 물성 변화)

  • Lee, Dae-Jin;Ji, Mi-Jung;Choi, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.289-289
    • /
    • 2007
  • Spinel structured $LiMn_2O_4$ is more economic and environmental friendly to be used as commercial active material for secondary battery compared to Co-oxide material active material, but spinel structure of $LiMn_2O_4$ is unstable and its capacitance decreases with increase of cycle. Therefore, the purpose of our sturdy is to improve the stability of $LiMn_2O_4$ spinel structure and increase its capacitance by using substituents or dopants. $LiMn_2O_4$ powder was synthesized by charging substituents or dopants mole fractions, and temperatures. Crystal state, structure and specific surface area of the synthesized powder were measured and also characteried electrochemically by measuring its impedance, charge-discharge capacitance and etc.

  • PDF

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Phase Transitions of $LiMn_2O_4$ on $CO_2$ Decomposition (($CO_2$ 분해시 $LiMn_2O_4$의 상변화)

  • Kwoen, Tae-Hwan;Yang, Chun-Mo;Park, Young-Goo;Cho, Young-Koo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.33-43
    • /
    • 2003
  • $LiMn_2O_4$ catalyst for $CO_2$ decomposition was synthesized by oxidation method for 30 min at 600$^{\circ}C$ in an electric furnace under air condition using manganese(II) nitrate $(Mn(NO_3)_2{\cdot}6H_2O)$, Lithium nitrate ($LiNO_3$) and Urea $(CO(NH_2)_2)$. The synthesized catalyst was reduced by $H_2$ at various temperatures for 3 hr. The reduction degree of the reduced catalysts were measured using the TGA. And then $CO_2$ decomposition rate was measured using the reduced catalysts. Phase-transitions of the catalysts were observed after $CO_2$ decomposition reaction at an optimal decomposition temperature. As the result of X-ray powder diffraction analysis, the synthesized catalyst was confirmed that the catalyst has the spinel structure, and also confirmed that when it was reduced by $H_2$, the phase of $LiMn_2O_4$ catalyst was transformed into $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase. After $CO_2$ decomposition reaction, it was confirmed that the peak of $LiMn_2O_4$ of spinel phase. The optimal reduction temperature of the catalyst with $H_2$ was confirmed to be 450$^{\circ}C$(maximum weight-increasing ratio 9.47%) in the case of $LiMn_2O_4$ through the TGA analysis. Decomposition rate(%) using the $LiMn_2O_4$ catalyst showed the 67%. The crystal structure of the synthesized $LiMn_2O_4$ observed with a scanning electron microscope(SEM) shows cubic form. After reduction, $LiMn_2O_4$ catalyst became condensed each other to form interface. It was confirmed that after $CO_2$ decomposition, crystal structure of $LiMn_2O_4$ catalyst showed that its particle grew up more than that of reduction. Phase-transition by reduction and $CO_2$ decomposition ; $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase at the first time of $CO_2$ decomposition appear like the same as the above contents. Phase-transition at $2{\sim}5$ time ; $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase by reduction and $LiMn_2O_4$ of spinel phase after $CO_2$ decomposition appear like the same as the first time case. The result of the TGA analysis by catalyst reduction ; The first time, weight of reduced catalyst increased by 9.47%, for 2${\sim}$5 times, weight of reduced catalyst increased by average 2.3% But, in any time, there is little difference in the decomposition ratio of $CO_2$. That is to say, at the first time, it showed 67% in $CO_2$ decomposition rate and after 5 times reaction of $CO_2$ decomposition, it showed 67% nearly the same as the first time.

The Synthesis of LiMn$_2$O$_4$by sol-gel method and properties as electrode materials for lithium secondary battery (Sol-Gel 법에 의한 LiMn$_2$O$_4$의 합성 및 리튬이차전지용 전극물질로의 특성)

  • 이진식;박용성;우제완
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.219-225
    • /
    • 2000
  • The spinel structured $LiMn_2O_4$was obtained by two consecutive heat treatment on xerogel; the first heat treatment was at $150^{\circ}C$ and the second at $350^{\circ}C$ was obtained by sol-gel process using an aqueous solution of lithium hydroxide and manganese acetate. The synthesized $LiMn_2O_4$ by the sol-gel process showed a discharge capacity of 88~56 mAh/g after 15 cycles in Li/lM $LiClO_4$(in PC)/$LiMn_2O_4$at a current density of 0.25 mA/$\textrm{cm}^2$ and the voltage ranged 3.5 V to 4.3 V. For the second heat treatment above $350^{\circ}C$, $Mn_2O_3$was formed as a by-product during the synthesis of $LiMn_2O_4$. The heat treatment at $500^{\circ}C$, for example, showed a lower discharge capacity 81~47 mAh/g, after the 15 charge/discharge cycles. The lower capacity was due to the increment of $Mn^{3+}$ ion and this phenomenon was in agreement with the Jahn-Teller distortion.

  • PDF

Charge/discharge Properties As a Function of Synthetic Conditions of $LiMnO_2$ for Lithium Polymer Batteries (리튬 폴리머 전지용 $LiMnO_2$의 합성조건에 따른 충방전 특성)

  • Cho, Young-Jai;Kim, Jong-Uk;Park, Gye-Choon;Wee, Sung-Dong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.541-544
    • /
    • 2001
  • Orthorhombic $LiMnO_2$ was synthesized by solid-state reaction using $LiOH{\cdot}H_{2}O$ and $Mn_{2}O_{3}$ as starting material. Its electrochemical properties as cathode in lithium batteries were examined. X-ray diiffraction revealed that the $LiMnO_2$ compound showed a well-defined orthorhombic phase of a space group with Pmnm. The capacity of $LiMnO_2$ agreed well with its specific surface area and grinding treatment was effective in improving cycling performance. For lithium polymer battery applications. the $LiMnO_2$ cell was characterized electrochemically by charge-discharge experiments. And the relationship between the characteristics of powder and electrochemical properties was studied in this research. A maximum discharge capacity of $160-170mAhg^{-1}$ for $LiMnO_2/Li$ cell was achieved.

  • PDF

Charge/discharge Properties As a Function of Synthetic Conditions of LiMnO$_2$ for Lithium Polymer Batteries (리튬 폴리머 전지용 LiMnO$_2$의 합성조건에 따른 충방전 특성)

  • 조영재;김종욱;박계춘;위성동;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.541-544
    • /
    • 2001
  • Orthorhombic LiMnO$_2$ was synthesized by solid-state reaction using LiOH$.$H$_2$O and Mn$_2$O$_3$ as starting material. Its electrochemical properties as cathode in lithium batteries were examined. X-ray diffraction revealed that the LiMnO$_2$ compound showed a well-defined orthorhombic phase of a space group with Pmnm. The capacity of LiMnO$_2$ agreed well with its specific surface area and grinding treatment was effective in improving cycling performance. For lithium polymer battery applications, the LiMnO$_2$ cell was characterized electrochemically by charge-discharge experiments. And the relationship between the characteristics of powder and electrochemical properties was studied in this research. A maximum discharge capacity of 160-170mAhg$^{-1}$ for LiMnO$_2$/Li cell was achieved

  • PDF

Electrochemical Properties of LiMn$_2$O$_4$by the Sort of Mixing Materials and Variation of Mole ratios (합성 물질의 종류 및 몰비 변화에 따른 LiMn$_2$O$_4$의 전기화학적 특성)

  • 최형기;박현배;정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.286-289
    • /
    • 1997
  • It was studied that the effect of the mixing materials and the mole ratios on electrochemical properties of LiMn$_2$O$_4$LiMn$_2$O$_4$is prepared by reacting stoichiometric mixture of LiOH.$H_2O$ and MnO$_2$(EMD or CMD) and heating at 80$0^{\circ}C$ for 36h. We obtained properties of crystal structure through X-ray diffraction. LiMn$_2$O was reversible at 4.5V~3.0V and displayed two reduction and oxidation. Optimum synthesis results were obtained by reacting with LiOH.$H_2O$ and MnO$_2$(EMD) at mole ratio 1:2.

  • PDF

Analysis of Electrochemical Characteristics of the Rechargeable $LiMn_2O_4$ Thin Film Battery (재충전이 가능한 박막전자용 $LiMn_2O_4$ 박막 전지의 전기화학 특성 분석)

  • Kim Joo-Seok;Jung Hunjoon;Kim Chan-Soo;Joo Seung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.131-135
    • /
    • 2000
  • In order to investigate the origin of capacity fading with charge/discharge cycling in $LiMn_2O_4$ thin film battery, impedance studies have been performed with increasing cycling in $LiMn_2O_4/1M\;LiClO_4-PC/Li$ cells. The fitted values obtained from impedance data show good agreements with the experimental results. Especially, the element of charge transfer resistance of $LiMn_2O_4/liquid$ electrolyte interface initially increased, and then saturated with increasing the charge/discharge cycles, which could explain the cause of initial abrupt capacity fading of $LiMn_2O_4$ thin film with cycling due to interfacial reaction. The steady capacity fading is caused by the increasing of Warburg resistance. The chemical diffusion coefficient of Li ions decreased from $5.15\times10^{-11}cm^2/sec$ at 1st cycles to $6.3\times10^{-12}cm^2/sec$ at 800th cycles, which attributed to the Jahn-Teller distortion/Mn dissolution which diminishes tetra hedral sites necessary for Li diffusion in $LiMn_2O_4$.

Spherical-shaped Zn2SiO4:Mn Phosphor Particles with Gd3+/Li+ Codopant (Gd3+/Li+ 부활성제가 첨가된 구형의 Zn2SiO4:Mn 형광체 입자)

  • Roh, Hyun Sook;Lee, Chang Hee;Yoon, Ho Shin;Kang, Yun Chan;Park, Hee Dong;Park, Seung Bin
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.752-756
    • /
    • 2002
  • Green-emitting $Zn_2SiO_4:Mn$ phosphors for PDP(Plasma Display Panel) application were synthesized by colloidal seed-assisted spray pyrolysis process. The codoping with $Gd^{3+}/Li^+$, which replaces $Si^{4+}$ site in the willemite structure, was performed to improve the luminous properties of the $Zn_2SiO_4:Mn$ phosphors. The particles prepared by spray pyrolysis process using fumed silica colloidal solution had a spherical shape, small particle size, narrow size distribution, and non-aggregation characteristics. The $Gd^{3+}/Li^+$ codoping amount affected the luminous characteristics of $Zn_2SiO_4:Mn$ phosphors. The codoping with proper amounts of $Gd^{3+}/Li^+$ improved both the photoluminescence efficiency and decay time of $Zn_2SiO_4:Mn$ phosphor particles. In spray pyrolysis, the post-treatment temperature is another factor controlling the luminous performance of $Zn_2SiO_4:Mn$ phosphors. The $Zn_{1.9}SiO_4:Mn_{0.1}$ phosphor particles containing 0.1 mol% $Gd^{3+}/Li^+$ co-dopant had a 5% higher PL intensity than the commercial product and 5.7 ms decay time after post-treatment at $1,145^{\circ}C$.