• Title/Summary/Keyword: $LiNi_{0.85}Co_{0.15}O_2$

Search Result 3, Processing Time 0.017 seconds

Charge-discharge behaviour of $LiNi_{0.85}Co_{0.15}O_2>/MPCF$ cell ($LiNi_{0.85}Co_{0.15}O_2/MPCF$전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.25-28
    • /
    • 1998
  • Lithiated cobalt and nickel oxides are becoming very attractive as active cathode materials for secondary lithium ion secondary battery. $LiCoO_2$ is easily synthesized from lithium cobalt salts, but has a relatively high oxidizing potential on charge. LiNiOz is synthesized by a more complex procedure and its nonstoichiometry significantly degraded the charge-discharge characteristics. But $LiNiO_2$ has a lower charge potential which increases the system stability. Lithiated cobalt and nickel oxides are iso-structure which make the preparation of solid solutions of $LiNi_{1-x}Co_xO_2$ for O$LiCoO_2 and LiNiO_2$ electrode. The aim of the presentb paper is to study the electrochemical behaviour, as weU as the possibilities for practical application of layered Iithiated nickel oxide stabilized by $Co^{3+}$ substitution as active cathode materials in lithium ion secondary battery.

  • PDF

Synthesis and Electrochemical Properties of Zn and Al added LiNi0.85Co0.15O2 Cathode Materials (Zn와 Al을 첨가한 LiNi0.85Co0.15O2 양극활물질의 제조 및 전기화학적 특성평가)

  • Kim, Su-Jin;Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.42-48
    • /
    • 2021
  • Zn and Al added LiNi0.85Co0.15O2 cathode materials were synthesized to improve electrochemical properties and thermal stability using a solid-state route. Crystal structure, particle size and surface shape of the synthesized cathode materials was measured using XRD (X-ray diffraction) and SEM (scanning electron microscopy). CV (cyclic voltammetry), first charge-discharge profiles, rate capability, and cycle life were measured using battery cycler (Maccor, series 4000). Strong binding energy of Al-O bond enhanced structure stability of cathode material. Electrochemical properties were improved by preventing cation mixing between Li+ and Ni2+. Large ion radius of Zn+ increased lattice parameter of NC cathode material, which meant unit-cell volume was expanded. NCZA25 showed 80% of capacity retention at 0.5 C-rate during 100 cycles, which was 12% higher than that of NC cathode. The discharge capacity of NCZA25 showed 104 mAh/g at 5 C-rate. NCZA25 achieved 36 mAh/g more capacity than that of NC cathod. NCZA25 cathode material showed excellent rate capability and cycling performance.

Synthesis of $Li_xNi_(0.85)Co_(0.15)O_2$ by the PVA-procursor Method and the Effect of Air Flow During the Pyrolysis

  • 권호진;김근배;김수주;송미영;박선희;권혜영;박동곤
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.508-516
    • /
    • 1999
  • Polycrystalline powder of LixNi0.85Co0.15O2 was synthesized by pyrolyzing a powder precursor obtained by the PVA-precursor method. Coin cells of lithium-ion rechargeable battery were assembled, whose the cathodes were fabricated from the crystalline powders of LixNi0.85Co0.15O2 synthesized by the method. The effect of synthetic variation on the property of the cell was tested by carrying out 100 consecutive cycles of charge-dis-charge on the cells. The property of the cell was largely influenced by the pyrolysis conditions applied for the synthesis of the LixNi0.85Co0.15O2. Depending on whether the pyrolysis was carried out in standing air or in the flow of dry air, the discharge capacity and cycle-reversibility of the cell varied in large extent. When the powder precursor was pyrolyzed in standing air, a minor phase of lithium carbonate was remained in the LixNi0.85Co0.15O2. The carbon containing powder precursor had to be pyrolyzed in the flow of dry air to eliminate the minor phase. In the flow of dry air, the lithium carbonate in the precursor was eliminated over 500-700。C without any prominent heat event. By controlling the flow of air over the precursor during its pyrolysis, particle size could also be altered. The effect of flowing dry air, during first step pyrolysis or during second step heat treatment, on the property of the cell was discussed.