• Title/Summary/Keyword: $LiMn_{2}O_{4}$

Search Result 354, Processing Time 0.041 seconds

Preparation and Characterization of LiMn₂O₄ Powder by Combustion of Poly(ethylene glycol)-Metal Nitrate Precursor

  • 박휴범;홍영식;이지은;권호진;김시중
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.612-618
    • /
    • 1997
  • $LiMn_2O_4$ powders were prepared by burning and subsequent calcination of PEG-metal nitrate precursor. After the burning stage of the precursor, some minor phases such as $Mn_2O_3$ (or $Mn_3O_4$), MnO, and carbonate were formed and single phases of $LiMn_2O_4$ were obtained by further calcinations above 400 ℃. From thermal analysis of the precursor, a violent thermal decomposition, which was indicated by a drastic weight loss accompanied by a sharp and strong exothermic peak, was observed and probably caused by an oxidation-reduction reaction between oxidizer and fuel. The formation of the minor phases could be explained in terms of the burning behavior of the precursor by employing valence concepts of propellant chemistry. The calcined powders were composed of submicron-sized but highly agglomerated particles and showed very broad particle size distribution.

X-ray diffraction and electrochemical properties of cathode active material LiMn$_2$O$_4$ for Lithium rechargeable batteries (리튬 2차 전지용 정극 활물질 LiMn$_2$O$_4$의 X-선 회절 분석 및 전기화학적 특성)

  • 정인성;성창호;박계춘;박복기;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.107-110
    • /
    • 1997
  • LiMn$_2$O$_4$ is prepared by reacting stoichiometric mixture of LiOH . $H_2O$ and MnO$_2$ (mole ratio 1 ; 1) and heating at 80$0^{\circ}C$, $700^{\circ}C$ for 24h, 36h, 48h, 60h and 72h. We obtained through X-ray diffraction that lattice parameter varied as function of calcined temperature and time. Cathode active materials calcined at 80$0^{\circ}C$ for 36h, (111)/(311) peak ratio was 0.37. It showed good charge/discharge characteristics. When (111)/(311) peak ratio was 0.37, it was that crystal structure is formed very well. In the result of charge/discharge test, when heated at 80$0^{\circ}C$ for 36h, charge/discharge characteristics of LiMn$_2$O$_4$ is the best.

  • PDF

AC Impedance analysis and charge/discharge characteristics of $LiMn_2O_4$ cathode according to conductive agent (도전재 종류에 따른 $LiMn_2O_4$정극의 AC Impedance 측정 및 충방전 특성)

  • Jeong, I.S.;Sung, C.H.;Park, B.G.;Gu, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1594-1596
    • /
    • 1997
  • $LiMn_2O_4$ is prepared by reacting stoichiometric mixture of LiOH $H_2O$ and $MnO_2$ (mole ratio 1 : 2) and calcinating at $800^{\circ}C$ for 24h, 36h, 48h, 60h and 72h. At X-ray diffraction, cathode active materials calcined at $800^{\circ}C$ for 36h. (111)/(311) peak ratio was 0.37. It was that crystal structure is formed very well. In the result of charge/discharge test, when heated at $800^{\circ}C$ for 36h, charge/discharge characteristics of $LiMn_2O_4$ is the best and Super-s-black sort of conductive agent showed well property. Also, AC impedance creased gradually during cycling and stabilized after 10cycle.

  • PDF

Electrochemical Properties of LiNi0.4Mn0.3Co0.3O2 Cathode Material for Lithium Ion Battery (리튬이온전지용 정극활물질 LiNi0.4Mn0.3Co0.3O2의 전기화학적 특성)

  • Kong, Ming-Zhe;Kim, Hyun-Soo;Kim, Ke-Tack;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.650-654
    • /
    • 2006
  • [ $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ ] cathode material was synthesized by a mixed hydroxide method. Structural characterization was carried out using X-ray diffraction studies. Electrochemical studies were performed by assembling 2032 coin cells with lithium metal as an anode. DSC (Differential scanning calorimetry) data showed that exothermic reactions of $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ charged to 4.3 V versus Li started at high temperatures$(280\sim390^{\circ}C)$. The cell of $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ mixed cathode delivered a discharge capacity of 150 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of 134 mAh/g was obtained at a 2 C rate. The reversible capacity after 100th cycles was 126 mAh/g when a cell was cycled at a current rate of 0.5 C in $2.8\sim4.3V$.

The crystal growth and the electrochemical property of $LiZn_xMn{2-x}O_4(0\leqq x \leqq$ 0.15) cathode material ($LiZn_xMn{2-x}O_4(0\leqq x \leqq$ 0.15) 정극 활물질의 결정 성장 변화와 전기 화학적 특성)

  • Jeong, In-Seong;Gu, Hal-Bon;Lee, Jin;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.133-136
    • /
    • 1999
  • We report on the electrochemical properly of LiZ $n_{x}$Mn $_{2-x}$ $O_4$ for different degrees of Zn substitution(x) Though all cathode material showed spinel phase based on cubic phase in X-ray diffraction, other peaks(M $n_2$ $O_3$ or M $n_3$ $O_4$) gradually exhibited and became intense with the increase of x vague in LiZ $n_{x}$Mn $_{2-x}$ $O_4$. In addtion, TG-DTA analysis exhibited that both LiM $n_2$ $O_4$ and LiZ $n_{0.1}$ M $n_{1.9}$ $O_4$ occurred the weight loss(TG) and the endothermic and exothermic reaction(DTA) until 80$0^{\circ}C$ When x=0.1 in LiZ $n_{x}$Mn $_{2-x}$ $O_4$ cathode materials showed the charge and discharge capacity of about 100mAh/g at first cycle and about 70mAh/g after tooth cycle.cle.e.cle.e.e.e.

  • PDF

Structures and Electrochemical Properties of LiNi0.5-xCo2x}Mn0.5-xO2 as Cathode Materials for Lithium-ion Batteries

  • Choi, Hyun-Chul;Kim, Ho-Jin;Jeong, Yeon-Uk;Jeong, Soo-Hwan;Cheong, In-Woo;Jung, Uoo-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2603-2607
    • /
    • 2009
  • $LiNi_{0.5-x}Co_{2x}Mn_{0.5-x}O_{2}$ (x = 0, 0.1, 1/6, 1.2, 0.3) were synthesized by the solid-state reaction method. The crystal structure was analyzed by X-ray powder diffraction and Rietveld refinement. $LiNi_{0.5-x}Co_{2x}Mn_{0.5-x}O_{2}$ samples give single phases of hexagonal layered structures with a space group of R-3m for x = 0.1, 1/6, 0.2, and 0.3. The lattice constants of a and c-axis were decreased with the increase in Co contents in samples. The thickness of MO2 slab was decreased and inter-slab distance was increased with the increase in Co contents in $LiNi_{0.5-x}Co_{2x}Mn_{0.5-x}O_{2}$. According to XPS analysis, the valence states of Mn, Co, and Ni in the sample are mainly +4, +3, and +3, respectively. The discharge capacity of 202 mAh/g at 0.1C-rate in the potential range of 4.7 - 3.0 V was obtained in $LiNi_{0.3}Co_{0.4}Mn_{0.3}O_2$ sample, and $LiNi_{0.4}Co_{0.2}Mn_{0.4}O_2$ gives excellent cycle performance in the same potential range.

Battery Performances of with Surface Treatment of Layered $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ Materials in Lithium Secondary Batteries (리튬2차전지용 층상계 $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$의 표면개질에 따른 전지특성 변화)

  • Kim, Hyun-Soo;Kong, Mingzhe;Kim, Ke-Tack;Moon, Seong-In;Yun, Mun-Soo;Kim, Woo-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.348-349
    • /
    • 2006
  • $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode material was synthesized by a mixed hydroxide methode. The surface of the $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ was coated with a carbon by using a sol-gel method to improve further its electrochemical properties. Electrochemical studies were performed by assembling 2032 coin cells with lithium metal as an anode. OSC (differential scanning calorimetry) data showed that exothermic reactions of charged to 4.3V vs. Li was suppressed in the carbon-coated materials. The carbon-coated $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ showed the improved rate capability and thermal stability.

  • PDF

Effect of substituent and dopant on properties of $LiMn_2O_4$ as cathode materials for lithium ion secondary batteries

  • Lee, Dae-Jin;Wai, Yin-Loo;Jee, Mi-Jung;Bae, Hyun;Choi, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.294-294
    • /
    • 2007
  • Spinel cathode material $LiMn_2O_4$ is currently studied as a promising cathode material for lithium ion secondary batteries for future applications because of it is low cost, easy to be prepared and capable to be operated in high voltage range. However as a cathode material, $LiMn_2O_4$ performs a poor capacity retention which leads to short cycle life. In this study, stoichiometric $LiMn_2O_4$ was synthesized with granulation method with ion substitution to stabilize its structure and niobium doping to improve its conductivity. These well-mixed powders were calcined at $850^{\circ}C$ for 6 hours and its properties were investigated. Correlations of dopant and electrochemical properties were examined as well.

  • PDF

Electrical Properties of lead free (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics with MnO2 Addition (MnO2 첨가량에 따른 비납계 (Na,K,Li)(Nb,Sb,Ta)O3 세라믹스의 전기적특성)

  • Lee, Seung-Hwan;Nam, Sung-Pill;Lee, Dong-Hyun;Lee, Sung-Gap;Lee, Sang-Chul;Lee, Young-Hie
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.801-804
    • /
    • 2011
  • Electrical properties and microstructure were investigated on the effects of $MnO_2$ and the lead-free $(Na_{0.44}K_{0.52}Li_{0.04})(Nb_{0.83}Sb_{0.07}Ta_{0.1})O_3$ ceramics with the addition of $MnO_2$ were fabricated by a conventional mixed oxide method. A gradual change in the crystal and microstructure was observed with the increase of $MnO_2$ addition. For the NKN-LST-xmol%$MnO_2$ sintered at $1100^{\circ}C$, bulk density increased with the addition of $MnO_2$ and showed maximum value at addition 1.0mol% of $MnO_2$. Curie temperature of the NKN-LST ceramics slightly decreased with adding $MnO_2$. The dielectric constant, piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) increased below 0.25mol% of $MnO_2$ addition, which might be due to the increase in density. The high piezoelectric properties = 145 pC/N, electromechanical coupling factor = 0.421 and dielectric constant = 2883 were obtained for the NKN-LST-0.25mol%$MnO_2$ sintered at $1100^{\circ}C$ for 4h.