• Title/Summary/Keyword: $LiFePO_4-LiCoO_2$

Search Result 16, Processing Time 0.024 seconds

Electrochemical Properties of $LiFePO_4-LiCoO_2$ Cathode Materials in Lithium Secondary Batteries (리튬이차전지 정극활물질용 $LiFePO_4-LiCoO_2$의 전기화학적 특성)

  • Kong, Ming-Zhe;Kim, Hyun-Soo;Kim, Ke-Tack
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.241-242
    • /
    • 2006
  • In this work, the $LiFePO_4-LiCoO_2$ mixed cathode electrodes were prepared and their electrochemical performances were measured in different current density. The cell of $LiFePO_4-LiCoO_2$ observed two voltage plateau regions at 3.4 and 3.9V. The cell of $LiFePO_4-LiCoO_2$ (90:10 wt%) mixed cathode delivered a discharge capacity of ca. 139.8 mAh/g at a 0.2C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca 85.7mAh/g was obtained at a 2C rate.

  • PDF

Electrochemical Properties and Thermal Stability of LiNi0.8Co0.15 Al0.05O2-LiFePO4 Mixed Cathode Materials for Lithium Secondary Batteries

  • Kim, Hyun-Ju;Jin, Bong-Soo;Doh, Chil-Hoon;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.63-67
    • /
    • 2012
  • We prepared various $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-cathode electrodes by changing the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ and $LiFePO_4$ used, and we analyzed the electrochemical characteristics of the cathodes. We found that the reversible specific capacity of the cathodes increased and that the capacity retention ratios of the cathodes decreased during cycling as the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ increased. Conversely, we found that although the reversible specific capacity of the cathodes decreased because of the material composition, the cycle property of the cathodes increased when the $LiFePO_4$ content increased. We analyzed the thermal stability of the $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-material cathodes by differential scanning calorimetry and found that it increased as the $LiFePO_4$ content increased.

Study on LiFePO4 Composite Cathode Materials to Enhance Thermal Stability of Hybrid Capacitor (하이브리드 커패시터의 열안정성 개선을 위한 LiFePO4 복합양극 소재에 관한 연구)

  • Kwon, Tae-Soon;Park, Ji-Hyun;Kang, Seok-Won;Jeong, Rag-Gyo;Han, Sang-Jin
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.242-246
    • /
    • 2017
  • The application of composite cathode materials including $LiFePO_4$ (lithium iron phosphate) of olivine crystal structure, which has high thermal stability, were investigated as alternatives for hybrid battery-capacitors with a $LiMn_2O_4$ (spinel crystal structure) cathode, which exhibits decreased performance at high temperatures due to Mn-dissolution. However, these composite cathode materials have been shown to have a reduction in capacity by conducting life cycle experiments in which a $LiFePO_4$/activated carbon cell was charged and discharged between 1.0 V and 2.3 V at two temperatures, $25^{\circ}C$ and $60^{\circ}C$, which caused a degradation of the anode due to the lowered voltage in the anode. To avoid the degradation of the anode, composite cathodes of $LiFePO_4/LiMn_2O_4$ (50:50 wt%), $LiFePO_4$/activated carbon (50:50 wt%) and $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (50:50 wt%) were prepared and the life cycle experiments were conducted on these cells. The composite cathode including $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ of layered crystal structure showed stable voltage behavior. The discharge capacity retention ratio of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was about twice as high as that of a $LiFePO_4/LiMn_2O_4$ cell at thermal stability experiment for a duration of 1,000 hours charged at 2.3 V and a temperature of $80^{\circ}C$.

Effect of Black Sugar as a Reducing Agent of $Fe^{3+}$ on the Synthesis and Properties of $LiFePO_4$ ($Fe^{3+}$ 환원제로서 흑설탕이 $LiFePO_4$ 합성 및 특성에 미치는 영향)

  • Kim, Woo-Hyun;Lee, Min-Woo;Kang, Chan-Hyoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.248-248
    • /
    • 2010
  • 리튬이온 2차전지의 대체 양극 후보 물질인 $LiFePO_4$를 합성하기 위하여 출발원료로 $Li_2CO_3$, $Fe_2O_3$, $NH_4H_2PO_4$를 사용하여 볼밀 방법으로 혼합 분쇄한 후 열처리를 실시하였다. 합성 시에 3가 Fe를 2가로 환원시키기 위하여 $C_{12}H_{22}O_{11}$(흑설탕)을 출발원료와 함께 5 ~ 12 wt%로 나눠서 첨가하였다. 합성 후 XRD로 결정구조의 양질성을 확인하였고. FE-SEM으로 나노미터 크기의 구형 입자를 관찰하였다. XRF를 이용하여 3 ~ 10 wt%의 탄소 잔량을 확인하였다. 전기화학적 특성을 충 방전시험기로 평가한 결과, 8wt%의 탄소원을 첨가한 $LiFePO_4$에서 가장 좋은 수명 특성을 얻었고, 최대 145 mAh/g의 방전용량을 얻었다.

  • PDF

Comparative Analysis of SOC Estimation using EECM and NST in Rechargeable LiCoO2/LiFePO4/LiNiMnCoO2 Cells

  • Lee, Hyun-jun;Park, Joung-hu;Kim, Jonghoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1664-1673
    • /
    • 2016
  • Lithium rechargeable cells are used in many industrial applications, because they have high energy density and high power density. For an effective use of these lithium cells, it is essential to build a reliable battery management system (BMS). Therefore, the state of charge (SOC) estimation is one of the most important techniques used in the BMS. An appropriate modeling of the battery characteristics and an accurate algorithm to correct the modeling errors in accordance with the simplified model are required for practical SOC estimation. In order to implement these issues, this approach presents the comparative analysis of the SOC estimation performance using equivalent electrical circuit modeling (EECM) and noise suppression technique (NST) in three representative $LiCoO_2/LiFePO_4/LiNiMnCoO_2$ cells extensively applied in electric vehicles (EVs), hybrid electric vehicles (HEVs) and energy storage system (ESS) applications. Depending on the difference between some EECMs according to the number of RC-ladders and NST, the SOC estimation performances based on the extended Kalman filter (EKF) algorithm are compared. Additionally, in order to increase the accuracy of the EECM of the $LiFePO_4$ cell, a minor loop trajectory for proper OCV parameterization is applied to the SOC estimation for the comparison of the performances among the compared to SOC estimation performance.

A study on the synthesis and improvement of electrochemical properties of olivine-type phosphate cathode materials for lithium rechargeable batteries by mechanical alloying (기계적 합금화법에 의한 리튬 이차전지용 phosphate계 양극물질의 제조 및 전기화학적 특성 향상에 관한 연구)

  • 김철우;권상준;정운태;이경섭
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.216-216
    • /
    • 2003
  • 현재 상용화되어 있는 리튬 이차전지용 양극재료로는 비교적 작동전압이 높은 층상 암염구조(LiCoO$_2$, LiNiO$_2$) 및 Spinet계(LiMn$_2$O$_4$) 전이금속 산화물이 대부분 이용되고 있다 하지만 LiCoO$_2$나 LiNiO$_2$ 같은 상용화 물질은 비교적 높은 비용과, 강한 독성 때문에 많은 문제점을 가지고 있다. 또 Spinel(LiMn$_2$O$_4$)는 낮은 비용과 환경친화적인 장점에도 불구하고 Jahn-Teller 변형과 관련된 구조적 변형이 심각하기 때문에 사이클시 비가역적인 용량의 감소가 심각하다. 이러한 관점에서 전이금속보다 그 양이 풍부하고 저렴할 뿐만 아니라 독성이 없는 Olivine 구조 (LiFePO$_4$)를 갖는 phosphate계 화합물에 관심을 가지게 되었다. LiFePO$_4$는 리튬 음극과 3.4V의 방전전압을 나타내며, 170mAh/g의 이론용량을 가지고 있어, Fe-base의 장점은 물론 안정적인 결정구조 및 현재 상용화된 재료들과 비슷한 에너지 밀도를 가진다. 따라서 본 연구에서는 양극물질의 기존 두 제조법인 고상반응법과 sol-gel법으로 대표되는 제조법의 단점을 상호 보완될 수 있다고 판단되는 기계적 합금화법(Mechanical Alloying, MA)공정을 도입하여 초미세립 분말 제조에 초점을 맞추어 Olivine phosphate계 양극물질의 제조 및 전기화학적 특성을 연구하였다.

  • PDF

The Research and Development Trend of Cathode Materials in Lithium Ion Battery (리튬이차전지용 양극재 개발 동향)

  • Park, Hong-Kyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.197-210
    • /
    • 2008
  • The cathode materials for lithium ion battery have been developed in accordance with the battery performance. $LiCoO_2$ initially adapted at lithium ion battery is going to be useful even at the charging voltage of 4.3 V by surface treatment or doping which drastically improved the performance of $LiCoO_2$. On the other hand, the complicate and multiple functions of recent electronic equipments required higher operational voltage and higher capacity than ever, which is going to be driving force for developing new cathode materials. Some of them are $LiNi_{1-x}{M_xO_2}$, $Li[Ni_{x}Mn_{y}Co_{z}]O_{2}$, $Li[{Ni}_{1/2}{Mn}_{1/2}]O_{2}$. Other new type of cathode materials having high safety is also developed to apply for HEV (hybrid electrical vehicle) and power tool applications. ${LiMn}_{2}{O}_{4}$ and $LiFePO_4$ are famous for highly stable material, which are expected to give contribution to make safer battery. In near future, the various materials having both capacity and safety will be developed by new technology, such as solid solution composite.

Improved Performance of Lithium-Ion Batteries using a Multilayer Cathode of LiFePO4 and LiNi0.8Co0.1Mn0.1O2

  • Hyunchul Kang;Youngjin Kim;Taeho Yoon;Junyoung Mun
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.320-325
    • /
    • 2023
  • In Li-ion batteries, a thick electrode is advantageous for lowering the inactive current collector portion and obtaining a high energy density. One of the critical failure mechanisms of thick electrodes is inhomogeneous lithiation and delithiation owing to the axial location of the electrode. In this study, it was confirmed that the top layer of the composite electrode contributes more to the charging step owing to the high ionic transport from the electrolyte. A high-loading multilayered electrode containing LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) was developed to overcome the inhomogeneous electrochemical reactions in the electrode. The electrode laminated with LFP on the top and NCM811 on the bottom showed superior cyclability compared to the electrode having the reverse stacking order or thoroughly mixed. This improvement is attributed to the structural and interfacial stability of LFP on top of the thick electrode in an electrochemically harsh environment.

고상법으로 제조한 $LiFePO_4$/C 양극의 전기화학적 특성

  • An, Jeong-Hun;Gam, Dae-Ung;Hwang, Dong-Hyeon;Son, Yeong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.306-306
    • /
    • 2010
  • 일반적으로 가장 많이 사용되고 있는 양극재료 가운데 $LiCoO_2$는 비교적 용량이 크고, 우수한 수명특성의 장점을 가지고 있는 반면, 단점으로 원재료의 높은 가격과 독성이 있으며, 열적으로 불안정하다. 반면, 원재료의 높은 가격과 독성, 열적 불안정성은 단점으로 지적된다. 이러한 단점을 극복할 수 있는 양극재료로 원료 가격이 저렴하고 높은 용량(170 mAh/g)과 열적으로 안정한 올리빈 구조를 형성하고 있는 $LiFePO_4$가 가장 이상적으로 고려되어져 왔다. 하지만 낮은 이온, 전기전도도 때문에 다양한 연구가 이루어졌다. 특성향상을 위한 연구가 필요하며, 다양한 전이금속의 도핑과 카본 코팅을 통하여 전기전도도의 향상과 함께 구조적으로도 리튬 이온의 확산을 더 용이하게 한다는 결과가 최근 보고되어 있다. 최근 다양한 전이금속의 도핑과 카본코팅을 통하여 전기전도도의 향상과 함께 구조적으로도 리튬이온의 확산을 더 용이하게 한다는 결과가 보고되어 있다. 본 연구에서는 고상반응법을 이용하여 $LiFePO_4$를 합성하였고, 카본소스를 첨가하여 전기전도도의 향상과 함께 높은 용량의 $LiFePO_4$/C양극재료를 합성하였다. 제조된 분말은 XRD 회절시험을 통하여 결정구조를 분석 하였으며, SEM을 이용하여 분말의 형상과 크기를 관찰 하였고, 또한 전기화학적 특성도 평가하였다.

  • PDF

Preparation of LiFe PO4 Using Chitosan and its Cathodic Properties for Rechargeable Li-ion Batteries

  • Hong, Kyong-Soo;Yu, Seong-Mi;Ha, Myoung-Gyu;Ahn, Chang-Won;Hong, Tae-Eun;Jin, Jong-Sung;Kim, Hyun-Gyu;Jeong, Euh-Duck;Kim, Yang-Soo;Kim, Hae-Jin;Doh, Chil-Hoon;Yang, Ho-Soon;Jung, Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1719-1723
    • /
    • 2009
  • The LiFeP$O_4$ powder was synthesized by using the solid state reaction method with Fe($C_2O_4){\cdot}2H_2O,\;(NH_4)_2HPO_4,\;Li_2CO_3$, and chitosan as a carbon precursor material for a cathode of a lithium-ion battery. The chitosan added LiFePO4 powder was calcined at 350 ${^{\circ}C}$ for 5 hours and then 800 ${^{\circ}C}$ for 12 hours for the calcination. Then we calcined again at 800 ${^{\circ}C}$ for 12 hours. We characterized the synthesized compounds via the crystallinity, the valence states of iron ions, and their shapes using TGA, XRD, SEM, TEM, and XPS. We found that the synthesized powders were carbon-coated using TEM images and the iron ion is substituted from 3+ to 2+ through XPS measurements. We observed voltage characteristics and initial charge-discharge characteristics according to the C rate in LiFeP$O_4$ batteries. The obtained initial specific capacity of the chitosan added LiFeP$O_4$ powder is 110 mAh/g, which is much larger than that of LiFeP$O_4$ only powder.