• Title/Summary/Keyword: $L_{2,1}$ norm

Search Result 122, Processing Time 0.03 seconds

LOCAL REGULARITY CRITERIA OF THE NAVIER-STOKES EQUATIONS WITH SLIP BOUNDARY CONDITIONS

  • Bae, Hyeong-Ohk;Kang, Kyungkeun;Kim, Myeonghyeon
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.597-621
    • /
    • 2016
  • We present regularity conditions for suitable weak solutions of the Navier-Stokes equations with slip boundary data near the curved boundary. To be more precise, we prove that suitable weak solutions become regular in a neighborhood boundary points, provided the scaled mixed norm $L^{p,q}_{x,t}$ with 3/p + 2/q = 2, $1{\leq}q$ < ${\infty}$ is sufficiently small in the neighborhood.

Identification of Manning's Roughness in 1D nonuniform flow (최적화 기법을 이용한 1차원 부등류에서의 매닝조도계수 추정)

  • Lee, Du-Han;Rhee, Dong-Sup;Kim, Myoung-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.679-683
    • /
    • 2010
  • 본 연구에서는 공간적 변수인 조도계수를 기지의 수위값을 이용하여 최적값을 결정하는 방법에 대해서 검토하고자 한다. 최적화 기법에 의한 조도계수는 기지의 수위값과 수치모의에 의한 결과 값의 전체 오차를 최소화하는 값으로 결정된다. 본 연구에서는 3가지 최적화 기법을 이용하였으며 가상 수로에 대해서 적용하였다. 수위계산은 표준축차법에 의해 수행하였으며 사용된 최적화 기법은 quasi-Newton 방법이다. 1차원 모형은 Matlab을 이용하여 표준축자법으로 구성하였으며 BFGS 기법, L-BFGS 기법, Steepest Gradient Descent 기법 등도 Matlab으로 구성하였다. 표준축차법은 조도계수가 입력되면 기지의 수위값과의 2-norm을 계산하도록 구성하였다. 계산 결과에 의하면 세가 기법 모두 20 23회 정도의 반복계산을 수행하고 값이 수렴되었는데, L-BFGS의 경우에는 정확하게 음수의 조도계수로 수렴하였으며, BFGS기법과 Steepest Gradient 기법의 경우에는 양의 값으로 정확하게 수렴하였다.

  • PDF

Common Fixed Point Theorems in Probabllistic Metric Spaces and Extension to Uniform Spaces

  • Singh, S.L.;Pant, B.D.
    • Honam Mathematical Journal
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 1984
  • Let(X, $\Im$) be a probabilistic metric space with a t-norm. Common fixed point theorems and convergence theorems generalizing the results of Ćirić, Fisher, Sehgal, Istrătescu-Săcuiu and others are proved for three mappings P,S,T on X satisfying $F_{Pu, Pv}(qx){\geq}min\left{F_{Su,Tv}(x),F_{Pu,Su}(x),F_{Pv,Tv}(x),F_{Pu,Tv}(2x),F_{Pv,Su}(2x)\right}$ for every $u, v {\in}X$, all x>0 and some $q{\in}(0, 1)$. One of the main results is extended to uniform spaces. Mathematics Subject Classification (1980): 54H25.

  • PDF

CHARACTERIZATIONS OF GEOMETRICAL PROPERTIES OF BANACH SPACES USING ψ-DIRECT SUMS

  • Zhang, Zhihua;Shu, Lan;Zheng, Jun;Yang, Yuling
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.417-430
    • /
    • 2013
  • Let X be a Banach space and ${\psi}$ a continuous convex function on ${\Delta}_{K+1}$ satisfying certain conditions. Let $(X{\bigoplus}X{\bigoplus}{\cdots}{\bigoplus}X)_{\psi}$ be the ${\psi}$-direct sum of X. In this paper, we characterize the K strict convexity, K uniform convexity and uniform non-$l^N_1$-ness of Banach spaces using ${\psi}$-direct sums.

The metric approximation property and intersection properties of balls

  • Cho, Chong-Man
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.467-475
    • /
    • 1994
  • In 1983 Harmand and Lima [5] proved that if X is a Banach space for which K(X), the space of compact linear operators on X, is an M-ideal in L(X), the space of bounded linear operators on X, then it has the metric compact approximation property. A strong converse of the above result holds if X is a closed subspace of either $\elll_p(1 < p < \infty) or c_0 [2,15]$. In 1979 J. Johnson [7] actually proved that if X is a Banach space with the metric compact approximation property, then the annihilator K(X)^\bot$ of K(X) in $L(X)^*$ is the kernel of a norm-one projection in $L(X)^*$, which is the case if K(X) is an M-ideal in L(X).

  • PDF

A Note on Relationship between T-sum and T-product on LR Fuzzy Numbers

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1141-1145
    • /
    • 2005
  • In this note, we show that Theorem 2.1[Kybernetika, 28(1992) 45-49], a result of a functional relationship between the membership function of LR fuzzy numbers of T-sum and T-product, remains valid for convex additive generator and concave shape functions L and R with simple proof. We also consider the case for 0-symmetric R fuzzy numbers.

  • PDF

An Unified Bayesian Total Variation Regularization Method and Application to Image Restoration (통합 베이즈 총변이 정규화 방법과 영상복원에 대한 응용)

  • Yoo, Jae-Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.41-48
    • /
    • 2022
  • This paper presents the unified Bayesian Tikhonov regularization method as a solution to total variation regularization. The integrated method presents a formula for obtaining the regularization parameter by transforming the total variation term into a weighted Tikhonov regularization term. It repeats until the reconstructed image converges to obtain a regularization parameter and a new weighting factor based on it. The experimental results show the effectiveness of the proposed method for the image restoration problem.

A RANDOM DISPERSION SCHRÖDINGER EQUATION WITH NONLINEAR TIME-DEPENDENT LOSS/GAIN

  • Jian, Hui;Liu, Bin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1195-1219
    • /
    • 2017
  • In this paper, the limit behavior of solution for the $Schr{\ddot{o}}dinger$ equation with random dispersion and time-dependent nonlinear loss/gain: $idu+{\frac{1}{{\varepsilon}}}m({\frac{t}{{\varepsilon}^2}}){\partial}_{xx}udt+{\mid}u{\mid}^{2{\sigma}}udt+i{\varepsilon}a(t){\mid}u{\mid}^{2{\sigma}_0}udt=0$ is studied. Combining stochastic Strichartz-type estimates with $L^2$ norm estimates, we first derive the global existence for $L^2$ and $H^1$ solution of the stochastic $Schr{\ddot{o}}dinger$ equation with white noise dispersion and time-dependent loss/gain: $idu+{\Delta}u{\circ}d{\beta}+{\mid}u{\mid}^{2{\sigma}}udt+ia(t){\mid}u{\mid}^{2{\sigma}_0}udt=0$. Secondly, we prove rigorously the global diffusion-approximation limit of the solution for the former as ${\varepsilon}{\rightarrow}0$ in one-dimensional $L^2$ subcritical and critical cases.

SMALL DATA SCATTERING OF HARTREE TYPE FRACTIONAL SCHRÖDINGER EQUATIONS IN DIMENSION 2 AND 3

  • Cho, Yonggeun;Ozawa, Tohru
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.373-390
    • /
    • 2018
  • In this paper we study the small-data scattering of the d dimensional fractional $Schr{\ddot{o}}dinger$ equations with d = 2, 3, $L{\acute{e}}vy$ index 1 < ${\alpha}$ < 2 and Hartree type nonlinearity $F(u)={\mu}({\mid}x{\mid}^{-{\gamma}}{\ast}{\mid}u{\mid}^2)u$ with max(${\alpha}$, ${\frac{2d}{2d-1}}$) < ${\gamma}{\leq}2$, ${\gamma}$ < d. This equation is scaling-critical in ${\dot{H}}^{s_c}$, $s_c={\frac{{\gamma}-{\alpha}}{2}}$. We show that the solution scatters in $H^{s,1}$ for any s > $s_c$, where $H^{s,1}$ is a space of Sobolev type taking in angular regularity with norm defined by ${\parallel}{\varphi}{\parallel}_{H^{s,1}}={\parallel}{\varphi}{\parallel}_{H^s}+{\parallel}{\nabla}_{{\mathbb{S}}{\varphi}}{\parallel}_{H^s}$. For this purpose we use the recently developed Strichartz estimate which is $L^2$-averaged on the unit sphere ${\mathbb{S}}^{d-1}$ and utilize $U^p-V^p$ space argument.

The Lifespan of Social Hub In Social Networking Sites: The Role of Reciprocity, Local Dominance and Social Interaction

  • Han, Sangman;Magee, Christopher L.;Kim, Yunsik
    • Asia Marketing Journal
    • /
    • v.17 no.1
    • /
    • pp.69-95
    • /
    • 2015
  • This paper examines a highly used social networking site (SNS) by studying the behavior of more than 11 million members over a 20 month period. The importance of the most highly active members to the overall network is demonstrated by the significant fraction of total visits by extremely active members in a given period but such members have surprisingly short lifespans (an average of only 2.5 months) as social hubs. We form and test a number of hypotheses concerning these social hubs and the determinants of their lifespan. We find that the speed of achieving social hub status increases the lifespan of a social hub. The norm of reciprocity is strongly confirmed to be present in the social hub population as visits are reciprocated. We also find that increasing local dominance in terms of activities over neighboring agents leads to a longer lifespan of a social hub. Contrary to expectations, local clustering in the vicinity of social hubs is smaller (rather than larger) than overall clustering. We discuss managerial implications in the paper.