The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.
We consider the hp-version to solve non-constant coefficient elliptic equations with Dirichlet boundary conditions on a bounded, convex polygonal domain $\Omega$ in $R^{2}.$ To compute the integrals in the variational formulation of the discrete problem we need the numerical quadrature rule scheme. In this paler we consider a family $G_{p}= {I_{m}}$ of numerical quadrature rules satisfying certain properties. When the numerical quadrature rules $I_{m}{\in}G_{p}$ are used for calculating the integrals in the stiffness matrix of the variational form we will give its variational fore and derive an error estimate of ${\parallel}u-\tilde{u}^h_p{\parallel}_0,{\Omega}'$.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.14
no.2
/
pp.125-140
/
2010
This paper develops a least-squares approach to the solution of the optimal control problem for the Navier-Stokes equations. We recast the optimality system as a first-order system by introducing velocity-flux variables and associated curl and trace equations. We show that a least-squares principle based on $L^2$ norms applied to this system yields optimal discretization error estimates in the $H^1$ norm in each variable.
This study has investigated naturally occurring radioactive materials (N.O.R.M; $^{238}U$, $^{222}Rn$) for 353 drinking groundwater wells in metamorphic rock areas in Korea. Uranium concentrations ranged from N.D (not detected) to 563.56 ${\mu}g/L$ (median value, 0.68 ${\mu}g/L$) and radon concentrations ranged from 108 to 11,612 pCi/L (median value, 1,400 pCi/L). Uranium and radon concentrations in the groundwater generally are similar to USA with similar geological setting. Uranium concentrations in 9 wells (2.6%) exceeded 30 ${\mu}g/L$, which is the maximum contaminant level (MCL) by the US environmental protection agency (EPA), radon concentrations in 46 wells (13%) exceeded 4,000 pCi/L, which is the Alternative MCL (AMCL) by the US.EPA. The log-log correlation coefficient between uranium and radon was 0.32. The correlation coefficient between uranium and pH was 0.12 and the correlation coefficient between radon and temperature was -0.01. The correlation coefficient between uranium and $HCO_3$ was 0.09 and the correlation coefficient between uranium and Ca was 0.11. The median value of uranium was high Chung-Buk (1.78 ${\mu}g/L$), Gyeong-Buk (1.37 ${\mu}g/L$), In-Cheon (1.06 ${\mu}g/L$) for each province. On the other hand, the median value of radon was high In-Cheon (2,962 pCi/L), Chung-Buk (2,339 pCi/L), Jeon-Buk (2,165 pCi/L) for each province. Jeon-Buk for log-log correlation coefficient is the highest (0.63) among provinces.
Journal of Korean Institute of Industrial Engineers
/
v.32
no.2
/
pp.74-81
/
2006
In this paper, we deal with the separation of data by concurrently determined, piecewise nonlinear discriminant functions. Toward the end, we develop a new $l_1$-distance norm error metric and cast the problem as a mixed 0-1 integer and linear programming (MILP) model. Given a finite number of discriminant functions as an input, the proposed model considers the synergy as well as the individual role of the functions involved and implements a simplest nonlinear decision surface that best separates the data on hand. Hence, exploiting powerful MILP solvers, the model efficiently analyzes any given data set for its piecewise nonlinear separability. The classification of four sets of artificial data demonstrates the aforementioned strength of the proposed model. Classification results on five machine learning benchmark databases prove that the data separation via the proposed MILP model is an effective supervised learning methodology that compares quite favorably to well-established learning methodologies.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.39
no.1
/
pp.32-39
/
2002
Vector quantization for image compression needs expensive encoding time to find the closest codeword to the input vector. This paper proposes a search algorithm for fast vector quantization encoding. Firstly, we derive a robust condition based on the efficient topological structure of the codebook to dramatically eliminate unnecessary matching operations from the search procedure. Then, we Propose a fast search algorithm using the elimination condition. Simulation results show that with little preprocessing and memory cost, the encoding time of the proposed algorithm is reduced significantly while the encoding quality remains the same with respect to the full search algorithm. It is also found that the Proposed algorithm outperforms the existing search algorithms.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.23
no.3
/
pp.211-236
/
2019
This paper is devoted to the study and investigation of the Runge-Kutta discontinuous Galerkin method for a system of differential equations consisting of two hyperbolic conservation laws. The numerical coupling flux which is used at a given interface (x = 0) is the upwind flux. Moreover, in the linear case, we derive optimal convergence rates in the $L_2$-norm, showing an error estimate of order ${\mathcal{O}}(h^{k+1})$ in domains where the exact solution is smooth; here h is the mesh width and k is the degree of the (orthogonal Legendre) polynomial functions spanning the finite element subspace. The underlying temporal discretization scheme in time is the third-order total variation diminishing Runge-Kutta scheme. We justify the advantages of the Runge-Kutta discontinuous Galerkin method in a series of numerical examples.
Purpose : Patient motion during magnetic resonance (MR) imaging is one of the major problems due to its long scan time. Entropy based post-processing motion correction techniques have been shown to correct motion artifact effectively. One of main limitations of these techniques however is its long processing time. In this study, we propose several methods to reduce this long processing time effectively. Materials and Methods : To reduce the long processing time, we used the separability property of two dimensional Fourier transform (2-D FT). Also, a computationally light metric (sum of all image pixel intensity) was used instead of the entropy criterion. Finally, partial Fourier reconstruction, in particular the projection onto convex set (POCS) method, was combined thereby reducing the size of the data which should be processed and corrected. Results : Time savings of each proposed method are presented with different data size of brain images. In vivo data were processed using the proposed method and showed similar image quality. The total processing time was reduced to 15% in two dimensional images and 30% in the three dimensional images. Conclusion : The proposed methods can be useful in reducing image motion artifacts when only post-processing motion correction algorithms are available. The proposed methods can also be combined with parallel imaging technique to further reduce the processing times.
The standard approach to signal resampling is to fit the original image to a continuous model and resample the function at a desired rate. We used the compact B-spline function as the continuous model which produces less oscillatory behavior than other tails functions. In the case of nonuniform resampling based on a B-spline model, the digital signal is fitted to a spline model, and then the fitted signal is resampled at a space varying rate determined by the transformation function. It is simple to implement but may suffer from artifacts due to data loss. The main purpose of this paper is the derivation of optimal nonuniform resampling algorithm. For the optimal nonuniform formulation, the resampled signal is represented by a combination of shift varying splines determined by the transformation function. This optimal nonuniform resampling algorithm can be verified from the experiments that It produces less errors.
For $f{\in}L^2(B,d{\nu})$, ${\parallel}f{\parallel}_{BMO}=\widetilde{{\mid}f{\mid}^2}(z)-{\mid}{\tilde{f}}(z){\mid}^2$. For f continuous on B, ${\parallel}f{\parallel}_{BO}=sup\{w(f)(z):z{\in}B\}$ where $w(f)(z)=sup\{{\mid}f(z)-f(w){\mid}:{\beta}(z,w){\leq}1\}$. In this paper, we will show that if $f{\in}BMO$, then ${\parallel}f{\parallel}_{BO}{\leq}M{\parallel}f{\parallel}_{BMO}$. We will also show that if $f{\in}BO$, then ${\parallel}f{\parallel}_{BMO}{\leq}M{\parallel}f{\parallel}_{BO}^2$. A homomorphic function $f:B{\rightarrow}{\mathbb{C}}$ is called a Bloch function ($f{\in}{\mathcal{B}}$) if ${\parallel}f{\parallel}_{\mathcal{B}}=sup_{z{\in}B}\;Qf(z)$<${\infty}$. In this paper, we will show that if $f{\in}{\mathcal{B}}$, then ${\parallel}f{\parallel}_{BO}{\leq}{\parallel}f{\parallel}_{\mathcal{B}}$. We will also show that if $f{\in}BMO$ and f is holomorphic, then ${\parallel}f{\parallel}_{\mathcal{B}}^2{\leq}M{\parallel}f{\parallel}_{BMO}$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.