• Title/Summary/Keyword: $L^2$-harmonic spinors

Search Result 1, Processing Time 0.014 seconds

CLIFFORD $L^2$-COHOMOLOGY ON THE COMPLETE KAHLER MANIFOLDS II

  • Bang, Eun-Sook;Jung, Seoung-Dal;Pak, Jin-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.669-681
    • /
    • 1998
  • In this paper, we prove that on the complete Kahler manifold, if ${\rho}(x){\geq}-\frac{1}{2}{\lambda}_0$ and either ${\rho}(x_0)>-\frac{1}{2}{lambda}_0$ at some point $x_0$ or Vol(M)=${\infty}$, then the Clifford $L^2$ cohomology group $L^2{\mathcal H}^{\ast}(M,S)$ is trivial, where $\rho(x)$ is the least eigenvalue of ${\mathcal R}_x + \bar{{\mathcal R}}(x)\;and\;{\lambda}_0$ is the infimum of the spectrum of the Laplacian acting on $L^2$-functions on M.

  • PDF