• Title/Summary/Keyword: $K_cat$$K_m$

Search Result 396, Processing Time 0.034 seconds

Analysis of Catalases from Photosynthetic Bacterium Rhodospirillum rubrum Sl

  • Lim, Hee-Kyung;Kim, Young-Mi;Lee, Dong-Heon;Kahng, Hyung-Yeel;Oh, Duck-Chul
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.168-176
    • /
    • 2001
  • Five different types of catalases from photosynthetic bacterium Rhodospirillum rubrum S1 grown aerobically in the dark were found in this study, and designated Catl (350 kDa), Cat2 (323 kDa), Cat3 (266 kDa), Cat4 (246 kDa), and Cat5 (238 kDa). Analysis of native PAGE revealed that Cat2, Cat3, and Cat4 were also produced in the cells anaerobically grown in the light. It is notable that only Cat2 was expressed much more strongly in response to the anaerobic condition. Enzyme activity staining demonstrated that Cat3 and Cat4 had bifunctional catalase-peroxidase activities, while Catl, Cat2, and Cat5 were typical monofunctional catalases. S1 cells grown aerobically in the presence of malate as the sole source of carbon exhibited an apparent catalase Km value of 10 mM and a Vmax of about 705 U/mg protein at late stationary growth phase. The catalase activity of Sl cells grown in the anaerobic environment exhibited a much lower Vmax of about 109 U/mg protein at late logarithmic growth phase. The catalytic activity was stable in the broad range of temperatures (30$\^{C}$-60$\^{C}$), and pH (6.0-10.0). R. rubrum S1 was much more resistant to H$_2$O$_2$in the stationary growth phase than in the exponential growth phase regardless of growth conditions. Cells of stationary growth phase treated with 15 mM H$_2$O$_2$for 1 h showed 3-fold higher catalase activities than the untreated cells. In addition, L-glutamate induced an 80-fold increase in total catalase activity of R. rubrum S1 compared with magic acid. Through fraction analyses of S1 cells, Cat2, Cat3, Cat4 and Cat5 were found in both cytoplasm and periplasm, while Catl was localized only in the cytoplasm.

  • PDF

Catalases in Acinetobacter sp. Strain JC1 DSM 3803 Growing on Glucose (포도당을 이용하여 성장하는 Acinetobacter sp. Strain JC1 DSM 3809에 존재하는 Catalase)

  • Shin, Kyoung-Ju;Ro, Young-Tae;Kim, Young-Min
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.155-162
    • /
    • 1994
  • Cells of Acinetobacter sp. strain JC1 DSM 3803, an aerobic monoxide-oxidizing bacterium, growing on glucose exhibited high catalase activity at the mid-exponential growth phase. The enzyme activity decreased gradually after then until the early stationary phase, increased again at the mid-stationary phase, and then decreased again thereafter. Cells growing on glucose was found to contain three kinds of catalses. Cat1, Cat2 and Cat3. The activities of Cat1 and Cat3 did change significantly during growth, but that of Cat2 exhibited significant variation. Cat3 was found to present only in cells growing on glucose, but not in cells growing on carbon monoxide of methanol. The activities of call and Cat3 in cell-free extracts were stable upon treatment with ethanol and chloroform, but decreased to some extent when the enzymewere treated with 2mM $H_2O_2$ and/or 3-amino-1,2,4-triazole (AT). Cat2 was found to be extremely sensitive to the ethanol-chloroform and $H_2O_2$ treatments, but was insensitive to the AT treatment. Cat1 exhibited enzyme activity after incubation for 1 min at 80$^{\circ}C$. Cat2 and Cat3 did not show enzyme activity after incubation for 1 min at 60$^{\circ}C$ and 70$^{\circ}C$, respectively. Cat2 was found to have peroxidase activity. Cat3 was purified to homogenity in seven steps. The molecular weight of the native enzyme was estimated to be 150,000. Sodium dodecyl sulfate-gel electrophoresis revealed two identical subunits of molecular weight 65,000. The enzyme was found to show two $K_m$ values of 39 mM and 58mM. The optimal pH for the enzyme activity was 7.0, but the activities at pH 6.0, 8.0, and 9.0, were found to be comparable to that at the optimal pH. The optimal temperature for the enzyme activity was found to be 40$^{\circ}C$. The enzyme also exhibited strong activity at 20$^{\circ}C$, 30$^{\circ}C$, and 50$^{\circ}C$. The purified enzyme was not affected by the ethanol-chloroform treatment. The enzyme, howerver, showed less than 10% of the original activity when it was treated with 12 mN AT, 0.1 mM $NaN_3$ of 1mM KCN.

  • PDF

Investigation of the Relationship between Protein, Message and Inducer Concentrations in Recombinant E. coli Cells

  • Jorgensen, Lene;Connor J. Thomas;Brian K. Oneill;Anton P.J. Middelbeg
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.21-24
    • /
    • 1997
  • Chloramphenicol acetyl transferase (CAT) protein and mRNA levels in E. coli were determined following induction of a tac::cat construct by isopropyl-${\beta}$-thiogalactopyranoside (IPTG). High cat mRNA levels did not directly reflect CAT protein levels, in either shakeflask experiments or fermentations. Furthermore, concentrations of IPTG resulting in the highest levels of expression of cat mRNA, were different to those resulting in highest levels of CAT protein. The data suggest that high transcriptional activities lead to limitations at the translational level.

  • PDF

Stimulation of Trout CYP1A Gene Expression in Mouse HEPA-1 Cells by 3-Methylcholanthrene

  • Lee, Soo-Young;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.404-409
    • /
    • 1997
  • Trout CYP1A-CAT expression construct was generated by cloning -3.5 Kb $5^I$ flanking DNA of trout liver CYP1A gene in front of CAT gene at pCAT-basic vector. Hepa 1 cells, which are known to contain a functional arylhydrbcarbon $receptor^I$ were transfected with trout CYP1A-CAT using lipofectin. 3-Methylcholanthrene (1 nM) was added into hepa 1 cells in culture in order to examine if $5^I$ flanking DNA of trout CYP1A gene could interact with mouse transactivating factors to bring about transcription of the chloramphenicol acetyltransferase(CAT) reporter gene. The level of CAT protein was measured by CAT ELISA and the level of CAT mRNA was determined by RTPCR. The treatment of 1 nM 3-methylcholanthrene resulted in two fold increases in CAT protein as well as CAT mRNA compared to untreated control hepa 1 cells. These data indicate that arylhydrocarbon receptors of mouse hepa 1 cells are functional to activate exogenously transfected trout CYP1A-CAT construct in terms of both transcription and translation of CAT. We also examined the effect of 3-methylcholanthrene on endogenous cyplal activity in hepa 1 cell. 3-Methylcholanthrene (1 nM) treatment to hepa 1 cells trahsfected with trout CYP1A-CAT construct stimulated the level of cyp1a1 mRNA by two folds and the activity of ethoxyresorufin-O-deethylase by two fold compared to that of control cells. In this study we reported that trout CYP1A-CAT reporter gene expression construct could be expressed by 3-methylcholanthrene treatment in mouse hepa 1 cells. Thus trout CYP1A-CAT could serve as a good model to study the mechanism of regulation of CYP1A1 gene expression.

  • PDF

Molecular Cloning, Segmental Distribution and Ontogenetic Regulation of Cationic Amino Acid Transporter 2 in Pigs

  • Zou, Shi-geng;Zhi, Ai-min;Zhou, Xiang-yan;Zuo, Jian-jun;Zhang, Yan;Huang, Zhi-yi;Xu, Ping-Wen;Feng, Ding-yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.712-720
    • /
    • 2009
  • The goal of this study was to elucidate the expression and segmental distribution of the glomerular cationic amino acid metabolism transporter-2 (CAT-2) and thus to improve our understanding of porcine cationic amino acid transporters and amino acid absorption. Porcine CAT-2 was cloned, sequenced and characterized. The predicted amino acid sequence of porcine CAT-2 shared 86.1% and 92.1% identity with human and mouse CAT-2A, respectively. The tissue distribution patterns and ontogenic changes of CAT-2 mRNAs were determined by real-time Q-PCR. The results showed that porcine CAT-2 was highly expressed in the heart and intestinal tract (duodenum, ileum and jejunum). In addition, the mRNA of CAT-2 was found in liver, lung, kidney, brain and muscle. Within the intestinal tract, CAT-2 mRNA was most abundant in the ileum and rarely expressed in the duodenum. In the duodenum, the levels of CAT-2 mRNA reached their peak on day 7 (p<0.05) while in the jejunum, levels were low on day 1 and 7 and increased rapidly after day 26 before peaking on days 30 and 60 (p<0.05). The levels then dramatically decreased by day 90 (p<0.05). In the ileum, levels achieved their maximum on day 30 and then decreased significantly on day 60 (p<0.05).

Effect of Light and Cadmium on the Activity and Isozyme Pattern of Catalase from Ric(Oryza sativa L.) (빛과 카드뮴이 벼 catalase 활성과 동위효소 발현에 미치는 영향)

  • Kim, Yoon-Kyoung;Lee, Mi-Young
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.287-292
    • /
    • 2006
  • The effects of cadmium on the catalase activity and isozyme patterns under light and dark conditions of rice(Oryza sativa L. cv. Dongjin) seedlings were examined. Cadmium treatment resulted in the notable enhancement of $H_2O_2$ contents in the seedling roots and leaves under light and dark conditions. The catalase isozyme patterns in the roots were different from those in the leaves, showing tissue-specific expression of the enzyme. Moreover, the expression patterns of catalase isozymes in the green seedling roots were different from those in the etiolated seedling roots following cadmium treatment. The increase of total catalase activity was about 16 times at 1 mM cadmium and marked inductions of the isozyme CAT1 and CAT2 contributed to this increase in the green seedling roots. On the other hand, in the etiolated seedling roots, total catalase activity was lower than that of control at 0.5 and 1 mM cadmium, even though catalase activity increased about 3 times at 0.1 mM cadmium. The 3 fold increase of total catalase activity was mainly due to the increase of CAT1, CAT3 and CAT4 at 0.1 mM cadmium. However, treatment with higher concentrations of cadmium decreased the activity of CAT2 and CAT4 in the etiolated roots. In the leaves, the catalase existed as three isozymes; one cationic isozyme CATc, one neutral isozyme CATn and one anionic isozyme CAT1 in the control. The isozyme patterns and total activities remained unaffected by cadmium under light and dark conditions in the seedling leaves. Taken together, it seems that cadmium-induced changes of catalase might be regulated by light in the roots, but not in the leaves.

Role of a Third Extracellular Domain of an Ecotropic Receptor in Moloney Murine Leukemia Virus Infection

  • Bae Eun-Hye;Park Sung-Han;Jung Yong-Tae
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.447-452
    • /
    • 2006
  • The murine ecotropic retroviral receptor has been demonstrated to function as a mouse cationic amino acid transporter 1(mCAT1), and is comprised of multiple membranespanning domains. Feral mouse (Mus dunni) cells are not susceptible to infection by the ecotropic Moloney murine leukemia virus (MoMLV), although they can be infected by other ecotropic murine leukemia viruses, including Friend MLV and Rauscher MLV. The relative inability of MoMLV to replicate in M. dunni cells has been attributed to two amino acids $(V_{214}\;and\;G_{236})$ located within the third extracellular loop of the M. dunni CAT1 receptor (dCAT1). Via the exchange of the third extracellular loop of the mCAT1 cDNA encoding receptor from the permissive mouse and the corresponding portion of cDNA encoding for the nonpermissive M. dunni receptor, we have identified the most critical amino acid residue, which is a glycine located at position 236 within the third extracellular loop of dCAT1. We also attempted to determine the role of the third extracellular loop of the M. dunni CAT1 receptor with regard to the formation of the syncytium. The relationship between dCAT1 and virus-induced syncytia was suggested initially by our previous identification of two MLV isolates (S82F in Moloney and S84A in Friend MLV), both of which are uniquely cytopathic in M. dunni cells. In an attempt to determine the relationship existing between dCAT1 and the virally-induced syncytia, we infected 293-dCAT1 or chimeric dCAT1 cells with the S82F pseudotype virus. The S82F pseudotype virus did not induce the formation of syncytia, but did show increased susceptibility to 293 cells expressing dCATl. The results of our study indicate that S82F-induced syncytium formation may be the result of cell-cell fusion, but not virus-cell fusion.

Distinction between the Influence of Dielectric Constant and of Methanol Concentration on Trypsin-Catalyzed Hydrolysis and Methanolysis

  • Park, Hyun;Chi, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.656-662
    • /
    • 1998
  • To make a distinction between the influence of the dielectric constant and of methanol concentration on trypsin-catalyzed hydrolysis and methanolysis at $0^{\circ}C$, a model reaction of $N^u$-benzyloxycarbonyl-L-lysine p-nitrophenyl ester with water-methanol mixtures was chosen and a kinetic study done. The $k_{cat}$ values increased with methanol concentration, in a linear manner whereas $K_{M}$ values increased in a log-linear fashion. However, the $k_{cat},$_{M}$ ratio increased at lower methanol concentrations than 30% and then began to decrease at higher concentrations. The decrease in $k_{catK_M}$observed at higher than 30% methanol concentrations is attributed to the hydrophobic partitioning effect on substrate binding. On the other hand, the increase in $k_{catK_M}$ in the 0~30% methanol concentration range seems to be due to the effect of nucleophilic cosolvent on $k_{cat}$ and of the dielectric constant on $k_m$. This explanation was verified by measuring the effect of varying the dielectric constant of the medium on kinetic constants with isopropyl alcohol chemically unrelated to the enzyme reaction as the methanol concentration is maintained at a constant level. Therefore, we conclude that the effect of increasing the methanol concentration in the model reaction on the kinetic parameters $k_{cat \;and\;{K_M}}$ is caused by changes in both the nucleophilicity and the dielectric constant of the medium. Based on product analysis, the increase in $k_4, k_3$by decreasing the temperature can be accounted for by the suppression of hydrolytic reactions. This observation indicates that the nucleophile is favored by low temperatures. There was no loss of trypsin activity over a 10 h period in 60% methanol concentration at $pH^*\; 5.5,\; 0^{\circ}C$.EX>.

  • PDF

Expression and Activity of Catalases Is Differentially Affected by GpaA (Ga) and FlbA (Regulator of G Protein Signaling) in Aspergillus fumigatus

  • Shin, Kwang-Soo;Yu, Jae-Hyuk
    • Mycobiology
    • /
    • v.41 no.3
    • /
    • pp.145-148
    • /
    • 2013
  • Vegetative growth signaling of the opportunistic human pathogenic fungus Aspergillus fumigatus is mediated by GpaA ($G{\alpha}$). FlbA is a regulator of G protein signaling, which attenuates GpaA-mediated growth signaling in this fungus. The flbA deletion (${\Delta}flbA$) and the constitutively active GpaA ($GpaA^{Q204L}$) mutants exhibit enhanced proliferation, precocious autolysis, and reduced asexual sporulation. In this study, we demonstrate that both mutants also show enhanced tolerance against $H_2O_2$ and their radial growth was approximately 1.6 fold higher than that of wild type (WT) in medium with 10 mM $H_2O_2$. We performed quantitative PCR (qRT-PCR) for examination of mRNA levels of three catalase encoding genes (catA, cat1, and cat2) in WT and the two mutants. According to the results, while levels of spore-specific catA mRNA were comparable among the three strains, cat1 and cat2 mRNA levels were significantly higher in the two mutants than in WT. In particular, the ${\Delta}flbA$ mutant showed significantly enhanced and prolonged expression of cat1 and precocious expression of cat2. In accordance with this result, activity of the Cat1 protein in the ${\Delta}flbA$ mutant was higher than that of $gpaA^{Q204L}$ and WT strains. For activity of the Cat2 protein, both mutants began to show enhanced activity at 48 and 72 hr of growth compared to WT. These results lead to the conclusion that GpaA activates expression and activity of cat1 and cat2, whereas FlbA plays an antagonistic role in control of catalases, leading to balanced responses to neutralizing the toxicity of reactive oxygen species.

Synthesis of Carbobenzoxy-alanyl-thiaarginine (thialysine) benzyl ester and kinetic Studies with Trypsin

  • 홍남주;장성훈;진동훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.689-695
    • /
    • 1998
  • Carbobenzoxy-alanyl-thiaarginine benzyl ester and carbobenzoxy-alanyl-thialysine benzyl ester were synthesized in solution. Kinetic studies were carried out using three different analytical methods, semi-classical method, progress curve analysis and competitive spectrophotometry. In competitive spectrophotometry, carbobenzoxy-valyl-glycyl-arginyl-p-nitroaniline was used as a detector. Kinetic constants such as $K_m$ and $V_{max}$ measured by competitive spectrophotometry are almost the same as those values measured by semi-classical method. Colorimetric Ellman's assays showed the thio-peptido mimetics to be a suitable substrates for trypsin. Kinetic studies with trypsin gave $K_m$ of 2.33 mM and $k_{cat}$ of $1.50{\times}10^5\;min^{-1}$ for carboxy-alanyl-thiaarginine benzyl ester and $K_m$ of $3.41{\times}10^{-3}\; Mm\; and\; k_{cat}\; of\; 520{\times}102\; min^{-1}$ for carbobenzoxy-alanyl-thialysine benzyl ester, respectively. Kinetic constants $(K_m=2.04{\times}10^{-2}\; mM, K_{cat}=4.42{\times}10^3 \;min^{-1})$ for natural substrate, carbobenzoxy-alanyl-lysine benzyl ester, were also evaluated by competitive spectrophotometry in order to compare the mode of binding on trypsin.