• Title/Summary/Keyword: $K-{\varepsilon}-{\tau}$난류모델

Search Result 2, Processing Time 0.014 seconds

The Numerical Analysis on In-cylinder Flow Fields of an Axisymmetric Engine Using $K-{\varepsilon}-{\tau}$ Turbulence Model ($K-{\varepsilon}-{\tau}$ 난류모델을 이용한 축대칭 엔진 실린더내 유동장의 수치해석)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.711-718
    • /
    • 1999
  • Current turbulence models including modified $K-{\varepsilon}-{\tau}$ turbulence model do not predict compression effect on turbulence accurately in an internal combustion engine. The $K-{\varepsilon}-{\tau}$ turbulence model was suggested to improve the predictability of compression effect by We et al. In this paper a numeri-cal study was performed to clarify the applicability of the $K-{\varepsilon}-{\tau}$ turbulenc model to the calculation of the in-cylinder flow of an axisymmetric engine. THe results using $K-{\varepsilon}-{\tau}$ turbulence model are compared to those from the modified $K-{\varepsilon}-{\tau}$ turbulence model and experimental data. The mean veloc-ity and rms velocity profiles using $K-{\varepsilon}-{\tau}$ turbulence model showed a better agreement with an experimental data than those of modifid $K-{\varepsilon}-e$ turbulence model.

  • PDF

Assessment of Turbulence Models for Engine Intake and Compression Flow Analysis (엔진 흡입.압축과정의 유동해석을 위한 난류모델의 평가)

  • Park, Kweon-Ha;Kim, Jae-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1129-1140
    • /
    • 2008
  • Many turbulence models have been developed in order to analyze the flow characteristics in an engine cylinder. Watkins introduced k-${\varepsilon}$ turbulence model for in-cylinder flow, and Reynolds modified turbulence dissipation rate by applying rapid transformation theory, Wu suggested k-${\varepsilon}-{\tau}$ turbulence model in which length scale and time scale are separated to introduce turbulence time scale, and Orszag proposed k-${\varepsilon}$ RNG model. This study applied the models to in-cylinder flow induced by intake valve and piston moving. All models showed similar flow fields during early stage of intake stroke. At the end of compression stroke, ${\kappa}-{\varepsilon}$ Watkins, ${\kappa}-{\varepsilon}$ Reynolds and ${\kappa}-{\varepsilon}$ RNG predicted well second and third vortex, especially ${\kappa}-{\varepsilon}$ RNG produced new forth vortex near central axis at the lower part of cylinder which was not predicted by the other models.