• Title/Summary/Keyword: $K-\epsilon$ Model

Search Result 260, Processing Time 0.023 seconds

Capability of Turbulence Modeling Schemes on Estimating the Film Cooling at Parallel Wall Jet-Nozzle Configuration (평행 벽 제트-노즐 형상에서 난류모델별 막냉각 예측 능력)

  • Lee, Jun;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.10-18
    • /
    • 2009
  • Numerical simulation has been performed in this study to investigate the capabilities of turbulence modeling schemes on estimating the film cooling at a referenced parallel wall jet-nozzle configuration. Also a additional simulation has been performed for film cooling under 2-dimensional axis symmetry conditions at a parallel wall jet-nozzle configuration. It was concluded that the best turbulence model is the standard $k-{\epsilon}$ model with enhanced wall functions. Also a additional simulation showed the film cooling characteristics that are resonable physically.

Validation of Turbulence Models for Analysis of a Single-Phase Turbulent Natural Convection (단상 난류 자연대류 해석을 위한 난류 모델링 정확도 검증)

  • Song, Ik-Joon;Shin, Kyung-Jin;Kim, Jungwoo;Park, Ik Kyu;Lee, Seung-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.682-686
    • /
    • 2015
  • The objective of this study is to validate the performance of the current $k-{\epsilon}$ turbulence model for a single-phase turbulent natural convection, which has been considered an important phenomenon in nuclear safety. As a result, the natural convection problems in the 2D and 3D cavities previously studied are calculated by using the ANSYS Fluent software. The present results show that the current $k-{\epsilon}$ turbulent model accounting for the buoyancy effect is in good agreement with the previous results for the natural convection problems in the 2D and 3D cavities although some improvements should be required to get better prediction.

Numerical Modeling of Two-Phase Non-Isothermal Turbulent Jet (비등온 난류 제트의 이상유동에 대한 수치모델)

  • Lien, Hoang Duc;Kim, Myong-Kwan;Kwon, Oh-Boong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.783-788
    • /
    • 2001
  • Choosing the most suitable mathematical model and relating this to turbulent tangential tensions model are very important in the investigations of turbulent two-phase flow. This paper considers two-fluid scheme. According to it, two phases have their own densities, velocities, and temperatures at any spatial point and at any moment. The equations of motion and heat transfer for each phase are linked with the forces of interaction between two phases. These forces are considered as predominant for the flow. As a closure in the system of motion equations, one modification of $K - {\epsilon}$ turbulent model is worked out. The modification uses two equations for turbulent kinetic energy of the phases and one - for the turbulent energy loss of main phase. This model can be set as a $K_g - K_p -{\epsilon}$ model. The modified model has been tested for both a two-phase non-isothermal flat jet and axially symmetrical jet. The numerical results are compared with the reference data revealing a good agreement between them.

  • PDF

Numerical Analysis of Rotating Channel Flow with an Anisotropic $k-\varepsilon$ Turbulence Model (비등방 $k-\varepsilon$ 난류모델에 의한 회전 덕트유동의 수치해석)

  • Myeong, Hyeon-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1046-1055
    • /
    • 1997
  • An anisotropic k-.epsilon. turbulence model for predicting the rotating flows is proposed with the simple inclusion of a new parameter dealing with the extra straining effects in the .epsilon.-equation. This model is employed to compute the effects of Coriolis forces on fully-developed flow in a rotating channel. The predicted results indicate that the present model captures fairly well the striking rotational-induced effects on the Reynolds stresses and the mean flow distributions, including the argumentation of turbulent transport on the unstable side (pressure surface) of the channel and its damping on the stable side (suction surface).

Three-dimensional analysis of the flow through an axial-flow fan (축류송풍기의 삼차원 유동장 해석)

  • Kim, Gwang-Yong;Kim, Jeong-Yeop;Jeong, Deok-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.541-550
    • /
    • 1997
  • Computational and experimental investigations on the three-dimensional flowfield through an automotive cooling fan are carried out in this work. Steady, incompressible, three-dimensional, turbulent flow through a rotating axial-flow fan is analyzed with Reynolds averaged Navier-Stokes equations and standard k-.epsilon. turbulence model. The governing equations are discretized with finite-volume approximations in non-orthogonal curvilinear coordinates. Computational static pressures on the casing wall agree well with the experimental data which are measured in this work. And, they are sensitive to the change of tip clearance. The flowfield is not significantly affected by the thickness of the blade. The k-.omega. model gives the static pressure rise on the casing wall which is similar to that with the k-.epsilon. model.

Development of Multiple Production $\varepsilon$ Equation Model in Low Reynolds Number $\kappa$-$\varepsilon$ Model with the Aid of DNS Data (저 레이놀즈수 $\kappa$-$\varepsilon$psilon.모형에서 DNS 자료에 의한 $\varepsilon$방정식의 다중 생성률 모형 개발)

  • Sin, Jong-Geun;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.304-320
    • /
    • 1996
  • A multiple production .epsilon. equation model was developed in the low Reynolds number $\kappa$-$\varepsilon$ model with the aids of DNS data. We derived the model theoretically and avoided the use of empirical correlations as much as possible in order for the model to have generality in the prediction of complex turbulent flow. Unavoidable model constants were, however, optimized with the aids of DNS data. All the production and dissipation models in the $\varepsilon$ equation were modified with damping functions to satisfy the wall limiting behavior. A new $f_{\mu}$ function, turbulent diffusion and pressure diffusion model for the k and .epsilon. equations were also proposed to satisfy the wall limiting behavior. By, computational investigation on the plane channel flows, we found that the multiple production model for .epsilon. equation could improve the near wall turbulence behavior compared with the standard production model without the complicated empirical modification. Satisfication of the wall limiting conditions for each turbulence model term was found to be most important for the accurate prediction of near wall turbulence behaviors.

Simulation of Three-Dimensional Turbulent Flows around an Ahmed Body-Evaluation of Turbulence Models- (Ahmed Body 주위의 3차원 난류유동 해석 - 난류모델의 평가)

  • Myong, H.K.;Jin, E.;Park, H.K.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.873-881
    • /
    • 1997
  • A numerical simulation has been carried out for three-dimensional turbulent flows around an Ahmed body. The Reynolds-averaged Navier-Stokes equation is solved with the SIMPLE method in general curvilinear coordinates system. Several k-.epsilon. turbulence models with two convective difference schemes are evaluated for the performance such as drag coefficient, velocity and pressure fields. The drag coefficient, the velocity and pressure fields are found to be changed considerably with the adopted k-.epsilon. turbulence models as well as the finite difference schemes. The results of simulation prove that the RNG k-.epsilon. model with the QUICK scheme predicts fairly well the tendency of velocity and pressure fields and gives more reliable drag coefficient. It is also demonstrated that the large difference between simulations and experiment in the drag coefficient is due to relatively high predicted values of pressure drag from vertical rear end base.

Computation of Turbulent Flows in Swirl Combustor (동축의 선회류들이 배합되는 연소기내 난류유동의 수치해석)

  • 백석철;김광용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.4
    • /
    • pp.511-518
    • /
    • 1986
  • 본 연구에서는 난류모델로는 기존의 K-.epsilon.모델과 LPS방법으로 수정된 K-.epsilon. 모 델을, 수치적 Scheme으로는 Hybrid Difference Scheme과 Skew-upwind Difference Sc- heme을 사용하여 그 결과를 각각 비교하였다.

An Numerical Analysis of 2-Dimensional Surface Buoyant Jets by k-$\epsilon$ Turbulence Model (이차원표층방류밀도분류의 k-$\epsilon$ 모델에 의한 수치해석)

  • 최한기;허재영;강주복
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1991.07a
    • /
    • pp.93-97
    • /
    • 1991
  • 수표면에 방류되는 온배수등의 흐름과 같은 표층방류밀도분류는 자유난류의 전단류 효과와, 방류수와 주위수의 밀도차에 기인하는 부력효과를 동시에 받는 흐름장을 형성한다. 또한, 이 흐름은 수표면 및 밀도계면에 의해 2 개의 자유경계에 둘러싸인 특이한 경계조건때문에 개수로 흐름으로 대표되는 자유전단류와 구별된다.(중략)

  • PDF

A Study on the Turbulent Natural Convection - Radiative Heat Transfer In a Partitioned Enclosure (차폐막이 있는 밀폐공간 내에서의 난류 자연대류 - 복사열전달에 관한 연구)

  • 박경우;이주형;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2738-2750
    • /
    • 1994
  • The Effects of radiative heat transfer on turbulent flow in a partitioned enclosure is studied numerically. The enclosure is partially divided by a thin, poorly conducting vertical divider projecting from the ceiling of the enclosure. The low Reynolds number $k-{\epsilon}$ model is adopted to calculate the turbulent flow field. The solutions to the radiative transfer equations are obtained by the discrete ordinates method(DOM). This method is based on control volume method and is compatible with the SIMPLER algorithm used to solve the momentum and energy equations. The effects of optical thickness and Planck number on the flow, temperature fields and heat transfer rates are investigated for a moderate Rayleigh number($=10^9$). The changes in buoyant flow fields and temperature distributions due to the variation of baffle length are also analyzed. From the predictions, radiant heat exchange between the baffle and the sidewalls strongly influences the temperature distribution in the baffle and its vicinity and total heat transfer increases as the optical thickness and the baffle length decrease. It is possible to neglect the radiative heat transfer effect when Planck number is over one.