• Title/Summary/Keyword: $IrO_2$ electrode

Search Result 97, Processing Time 0.022 seconds

Process Parameter Optimization via RSM of a PEM based Water Electrolysis Cell for the Production of Green Hydrogen

  • P Bhavya Teja Reddy;Hiralal Pramanik
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.388-404
    • /
    • 2024
  • In the present work, the operating parameters were optimized using Box Behnken Design (BBD) in response surface methodology (RSM) to maximize the hydrogen production rate (R1) and hydrogen production rate per unit watt consumed (R2) of a proton exchange membrane electrolysis cell (PEMEC), a third response (R3) which was the sum of the scaled values of R1 and R2 were selected to be maximized so that both hydrogen production rate and hydrogen production rate per unit watt consumed could be maximized. The major parameters which were influencing the experiment for enhancing the output responses were oxygen electrode/anode electrocatalyst loading (A), current supplied (B) and water inlet temperature (C). The commercial proton exchange membrane Nafion® was used as the electrolyte. The acetylene black carbon (CAB) supported IrO2 was used as the electrocatalyst for preparing oxygen electrode/anode whereas commercial Pt (40 wt%)/CHSA was used as the H2 electrode/cathode electrocatalyst. The quadratic model was developed to predict the output/ responses and their proximity to the experimental output values. The developed model was found to be significant as the P values for both the responses were < 0.0001 and F values were greater than 1. The optimum condition for both the responses were O2 electrode/anode electrocatalyst loading of 1.78 mg/cm2, supplied current of 0.33 A and water inlet temperature of 54℃. The predicted values for hydrogen production rate (R1) and hydrogen production rate per unit watt consumed (R2) were 2.921 mL/min and 2.562 mL/(min·W), respectively obtained from the quadratic model. The error % between the predicted response values and experimental values were 1.47% and 3.08% for R1 and R2, respectively. This model predicted the optimum conditions reasonably in good agreement with the experimental conditions for the enhancement of the output responses of the developed PEM based electrolyser.

Organopalladium(II) Complexes as Ionophores for Thiocyanate Ion-Selective Electrodes

  • Kim, Dong-Wan;Lee, So-Hyun;Kim, Jung-Hwan;Kim, Jin-Eun;Park, Jong-Keun;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2303-2308
    • /
    • 2009
  • A thiocyanate poly(vinyl chloride) (PVC) membrane electrode based on [1,2-bis(diphenylphosphino)ethane]dihalopalladium( II), [(dppe)$PdX_2$, X = Cl ($L^1$), X = I ($L^2$)] as active sensor has been developed. The diiodopalladium complex, [(dppe)$PdI_2](L^2$) displays an anti-Hofmeister selectivity sequence: $SCN^-\;>\;I^-\;>\;{ClO_4}^-\;>\;Sal^-\;>\;Br^-\;>\;{NO_2}^-\;>\;{HPO_4}^-\;>\;AcO^-\;>\;{NO_3}^-\;>\;{H_2PO_4}^-\;>\;{CO_3}^{2-}$. The electrode exhibits a Nernstian response (-59.8 mV/decade) over a wide linear concentration range of thiocyanate ($(1.0\;{\times}\;10^{-1}\;to\;5.0\;{\times}\;10^{-6}$ M), low detection limit ($(1.1\;{\times}\;10^{-6}$ M), fast response $(t_{90%}$ = 24 s), and applicability over a wide pH range (3.5∼11). Addition of anionic sites, potassium tetrakis[p-chlorophenyl] borate (KTpClPB) is shown to improve potentiometric anion selectivity, suggesting that the palladium complex may operate as a partially charged carrier-type ionophore within the polymer membrane phase. The reaction mechanism is discussed with respect to UV-Vis and IR spectroscopy. Application of the electrode to the potentiometric titration of thiocyanate ion with silver nitrate is reported.

Effect of the Introduction of UV Irradiation on Crystallization of Sr0.9Bi2.1Ta2O9 Thin Films by Sol-gel Method (UV노광 공정 도입이 Sol-gel 법으로 제조된 Sr0.9Bi2.1Ta2O9박막의 결정화에 미치는 영향)

  • 최병옥;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.184-190
    • /
    • 2003
  • $Sr_{0.9}Bi_{2.1}Ta_2O_9$thin films were deposited on $IrO_2$ electrode by spin coating method using photosensitive sol-gel solution. To ensure the UV-exposure effect on SBT thin films, UV irradiated films and non-UV irradiated films were analyzed by XRD, SEM. As a result, UV-irradiation on SBT thin films promoted grain growth of SBT compared with no UV irradiation. In case of the UV irradiated films annealed at$740{\circ}C$for 1 h in an oxygen ambient, the 2Pr value and Pr/Ps at${pm}5$V were$11.48{mu}C/cm^2$and 0.53, respectively. 2Pr values of the UV irradiated SBT thin films at$660-740{circ}C were approximately 12% higher than those of non-UV irradiated thin films.

생물공정 모니터링을 위한 Fiber Optic 생물센서 개발

  • Son, Ok-Jae;Lee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.819-822
    • /
    • 2001
  • In this study a fiber optic biosensor has been developed to on-line monitor the concentrations of oxygen and glucose. The oxygen concentrations in solution and gas phase monitored by the fiber optic sensor has been compared with those by a dissolved oxygen electrode and an IR-type $O_2$ analyzer. The fiber optic glucose sensor has been made by immobilizing glucose oxidase on the tip of the optic fiber and used to on-line monitor the concentration of glucose in a fermentation process.

  • PDF

Effect of Operation Temperature on the Durability of Membrane and Electrodes in PEM Water Electrolysis (PEM 수전해에서 막과 전극의 내구성에 미치는 구동 온도의 영향)

  • Donggeun Yoo;Seongmin Kim;Byungchan Hwang;Sohyeong Oh;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.19-25
    • /
    • 2023
  • Although a lot of research and development has been conducted on the performance improvement of PEM (Proton Exchange Membrane) water electrolysis, the research on durability is still in early stage. This study investigated effect of temperature on the water electrolysis durability when driving temperature of the PEM water electrolysis was increased to improve performance. Voltage change, I-V, CV (Cyclic Voltammetry), LSV (Linear Sweep Voltammetry), Impedance, and FER (Fluoride Emission Rate) were measured while driving under a constant current condition in a temperature range of 50~80 ℃. As the operating temperature increased, the degradation rate increased. At 50~65 ℃, the degradation of the IrO2 electrocatalyst mainly affected the durability of the PEM water electrolysis cell. At 80 ℃, the polymer membrane and electrode degradation proceeded similarly, and the short resistance decreased to 1.0 kΩ·cm2 or less, and the performance decreased to about 1/3 of the initial stage after 144 hours of operation due to the shorting phenomenon.

An Electrolytic Treatment of Shipboard Sewage by Using DSA Electrode(II) -Continuous Electrolytic Treatment- (DSA 전극에 의한 선박오폐수의 전해처리(II))

  • 김인수;조권희;남청도
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.2
    • /
    • pp.77-84
    • /
    • 1997
  • For the effective treatment of shipboard sewage continuously, a non-diaphragm electrolytic treatment device using DSA type insoluble electrode, Ti/IrO2, anode and H-C metal cathode, was studied. The most effective electrolytic conditions were obtained when cell clearance, 6mm, pH 5-6 and the concentration of seawater, more than 20% as batch test results. The COD removal rate was varied in logarithmic function, showed as C=Coe-KE and the required current was E = A/QCo [A.min/mgCOD]. When the COD removal effeciency was more than 90%, the electrolytic reaction constant was 0.02.

  • PDF

Electrolytic Treatment of Emulsified Oily Wastewater Using DSA Electrode (I) - Batch Treatment - (DSA 전극을 사용한 에멀젼 함유폐수의 전해처리 (I) -회분식 전해처리-)

  • 김인수;송영채
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.67-75
    • /
    • 1996
  • An innovative batch electrolytic system consisted of electrolytic basin, which was equipped with DSA(Dimensionally Stable Anode) type insoluble electrode, Ti/IrO2 anode and H-C metal cathode, and flotation separator was developed for the efficient treatment of shipboard emulsified oily wastewater. The electorod cleance and current density of elecrolytic basin to ensure maximum treatment efficiency of oily wastewater was evaluated as 6 mm, 3 A/dm3, respectively. The electrolytic efficiency of oily wastewater was affected by the operationtemperature, and it means that the temperature controller to ensure the stabiity of the process is required. The conductivity in the electrolytic basin was increased with the percentage of sea water in the oily wastewater, and over 90% of treatment efficiency of oily wastewater could be obtained at 7% of sea water. The oil removal rate was increased according to the increase of the quantity of electricity, and the maximum value of electrilyic rate constant was 288 mgoil/A.min. The information obtained from this study might be used for development of an efficient continuous electrolytic system treating the emulsified oily wastewater.

  • PDF

Analysis on Oxidation of Porous Silica Obtained from Thermal Oxidation of Porous Silicon (다공성 실리콘의 산화로부터 얻은 다공성 실리카의 산화에 대한 분석)

  • Koh, Young-Dae
    • Journal of Integrative Natural Science
    • /
    • v.3 no.3
    • /
    • pp.153-156
    • /
    • 2010
  • Oxidation behaviors of porous silicon were investigated by the measurement of area of $SiO_2$ vibrational peaks in FT-IR spectra during thermal oxidation of porous silicon at corresponding temperatures. Visible photoluminescent porous silicon samples were obtained from an electrochemical etch of n-type silicon of resistivity between 1-10 ${\Omega}/cm$. The etching solution was prepared by adding an equal volume of pure ethanol to an aqueous solution of HF. The porous silicon was illuminated with a 300 W tungsten lamp for the duration of etch. Etching was carried out as a two-electrode galvanostatic procedure at applied current density of 200 $mA/cm^2$ for 5 min. The porosity of samples prepared was about 80%. After formation of porous silicon, the samples were thermally oxidized at $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, and $400^{\circ}C$, respectively. The growth rate of $SiO_2$ layer of porous silicon was investigated by using FT-IR spectroscopy. The effect of oxidation of porous silicon was presented.

Preparation and Electrochemical Behaviors of Petal-like Nickel Cobaltite/Reduced Graphene Oxide Composites for Supercapacitor Electrodes

  • Kim, Jeonghyun;Park, Soo-Jin;Kim, Seok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.324-330
    • /
    • 2019
  • Petal-like nickel cobaltite ($NiCo_2O_4$)/reduced graphene oxide (rGO) composites with different $rGO-to-NiCo_2O_4$ weight ratios were synthesized using a simple hydrothermal method and subsequent thermal treatment. In the $NiCo_2O_4/rGO$ composite, the $NiCo_2O_4$ 3-dimensional nanomaterials contributed to the improvement of electrochemical properties of the final composite material by preventing the restacking of the rGO sheet and securing ion movement passages. The composite structure was examined by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Fourier-transform infrared (FT-IR) spectroscopy. The FE-SEM and TEM images showed that petal-like $NiCo_2O_4$ was supported on the rGO surface. Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) were used for the electrochemical analysis of composites. Among the prepared composites, $0.075g\;rGO/NiCo_2O_4$ composite showed the highest specific capacitance of $1,755Fg^{-1}$ at a current density of $2Ag^{-1}$. The cycle performance and rate capability of the composite material were higher than those of using the single $NiCo_2O_4$ material. These nano-structured composites could be regarded as valuable electrode materials for supercapacitors that require superior performance.