• Title/Summary/Keyword: $In_2O_3$ coating

Search Result 1,072, Processing Time 0.035 seconds

Development of High-Quality Poly(3,4-ethylenedioxythiophene) Electrode Pattern Array Using SC1 Cleaning Process (SC1 세척공정을 이용한 고품질 Poly(3,4-ethylenedioxythiophene) 전극 패턴 어레이의 개발)

  • Choi, Sangil;Kim, Wondae;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.4 no.4
    • /
    • pp.311-314
    • /
    • 2011
  • Application of self-assembled monolayers (SAMs) to the fabrication of organic thin film transistor has been recently reported very often since it can help to provide ohmic contact between films as well as to form simple and effective electrode pattern. Accordingly, quality of these ultra-thin films is becoming more imperative. In this study, in order to manufacture a high quality SAM pattern, a hydrophobic alkylsilane monolayer and a hydrophilic aminosilane monolayer were selectively coated on $SiO_2$ surface through the consecutive procedures of a micro-contact printing (${\mu}CP$) and dip-coating methods under extremely dry condition. On a SAM pattern cleaned with SC1 solution immediately after ${\mu}CP$, poly(3,4-ethylenedioxythiophene) (PEDOT) source and drain electrode array were very selectively and nicely vapour phase polymerized. On the other side, on a SC1-untreated SAM pattern, PEDOT array was very poorly polymerized. It strongly suggests that the SC1 cleaning process effectively removes unwanted contaminants on SAM pattern, thereby resulting in very selective growth of PEDOT electrode pattern.

Superhydrophobic nanostructured non-woven fabric using plasma modification

  • Shin, Bong-Su;Lee, Kwang-Reoul;Kim, Ho-Young;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.320-320
    • /
    • 2011
  • We describe fabrication of superhydrophobic surface on non-woven fabric (NWF) having nano-hairy structures and a hydrophobic surface coating. Oxygen plasma was irradiated on NWF for nano-texuring and a precursor of HMDSO (Hexamethydisiloxane) was introduced as a surface chemical modification for obtaining superhydrophobicity using 13.56 MHz radio frequency-Plasma Enhanced Chemical Vapor Deposition (rf-PECVD). O2 plasma treatment time was varied from 1 min to 60 min at a bias voltage of 400V, which fabricated pillar-like structures with diameter of 30 nm and height of 150 nm on NWF. Subsequently, hydrophobic coating using hexamethyldisiloxane vapor was deposited with 10 nm thickness on NWF substrate at a bias voltage of 400 V. We evaluate superhydrophobicity of the modified NWF with sessile drop using goniometer and high speed camera, in which aspect ratio of nanohairy structures, contact angle and contact angle hysteresis of the surfaces were measured. With the increase of aspect ratio, the wetting angle increased from $103^{\circ}$ to $163^{\circ}$, and the contact angle hysteresis decreased dramatically below $5^{\circ}$. In addition, we had conducted experiment for nucleation and condensation of water via E-SEM. During increasing vapor pressure inside E-SEM from 3.7 Torr to over 6 Torr which is beyond saturation point at $2^{\circ}C$, we observed condensation of water droplet on the superhydropobic NWF. While the condensation of water on oxygen plasma treated NWF (superhydrophilic) occurred easily and rapidly, superhydrophobic NWF which was fabricated by oxygen and HMDSO was hardly wet even under supersaturation condition. From the result of wetting experiment and water condensation via E-SEM, it is confirmed that superhydrophobic NWF shows the grate water repellent abilities.

  • PDF

Design of Supramolecular Electrolytes for Solid State Dye-sensitized Solar Cells (고체형 염료감응 태양전지용 초분자 전해질 개발)

  • Koh, Jong-Kwan;Koh, Joo-Hwan;Seo, Jin-Ah;Kim, Jong-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.24-27
    • /
    • 2009
  • Solid-state dye-sensitized solar cells (DSSCs) have been constructed employing supramolecular electrolytes with multiple hydrogen bonding. A supramolecule was facilely synthesized by one-pot reaction between the amines of methyl isocytosine (MIC) and the epoxy groups of poly(ethylene glycol diglycidyl ether) (PEGDGE) to produce quadruple hydrogen bonding units. Hydrogen bonding interactions and dissolution behavior of salt in supramolecular electrolytes are investigated. The ionic conductivity of the supramolecular electrolytes with ionic liquid, i.e. 1-methyl-3-propylimidazolium iodide (MPII) reaches $8.5{\times}10^{-5}$ S/cm at room temperature, which is higher than that with metal salt (KI). A worm-like morphology is observed in the FE-SEM micrographs of $TiO_2$ nanoporous layer, due to the connection of $TiO_2$ nanoparticles resulting from adequate coating by electrolytes. DSSCs employing the supramolecular electrolytes with MPII and KI exhibit an energy conversion efficiency of 2.5 % and 0.5 %, respectively, at 100 $mW/cm^2$, indicating the importance of the cation of salt. Solar cell performances were further improved up to 3.7 % upon introduction of poly(ethylene glycol dimethyl ether) (PEGDME) with 500 g/mol.

  • PDF

Preparation and characterization of Zinc Oxide films deposition by (PVD) (PVD 코팅법에 의한 ZnO제조 및 특성)

  • Kim, Sung Jin;Pak, Hunkyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.95.1-95.1
    • /
    • 2010
  • Transparent conducting ZnO films were deposited to apply DSSC Substrate on glass substrates at $500^{\circ}C$ by ionbeam-assisted deposition. Crystallinity, microstructure, surface roughness, chemical composition, electrical and optical properties of the films were investigated as a function of deposition parameters such as ion energy, and substrate temperature. The microstructure of the polycrystalline ZnO films on the glass substrate were closely related to the oxygen ion energy, arrival ratio of oxygen to Zinc Ion bombarded on the growing surface. The main effect of energetic ion bombardment on the growing surface of the film may be divided into two categories; 1) the enhancement of adatom mobility at low energetic ion bombardment and 2) the surface damage by radiation damage at high energetic ion bombardment. The domain structure was obtained in the films deposited at 300 eV. With increasing the ion energy to 600 eV, the domain structure was changed into the grain structure. In case of the low energy ion bombardment of 300 eV, the microstructure of the film was changed from the grain structure to the domain structure with increasing arrival ratio. At the high energy ion bombardment of 600 eV, however, the only grain structure was observed. The electrical properties of the deposited films were significantly related to the change of microstructure. The films with the domain structure had larger carrier concentration and mobility than those with the grain structure, because the grain boundary scattering was reduced in the large size domains compared with the small size grains. The optical transmittance of ZnO films was dependent on a surface roughness. The ZnO films with small surface roughness, represented high transmittance in the visible range because of a decreased light surface scattering. By varying the ion energy and arrival ratio, the resistivity and optical transmittance of the films were varied from $1.1{\times}10^{-4}$ to $2.3{\times}10^{-2}{\Omega}cm$ and from 80 to 87%, respectively. The ZnO film deposited at 300 eV, and substrate temperature of $500^{\circ}C$ had the resistivity of $1.1{\times}10^{-4}{\Omega}cm$ and optical transmittance of 85% in visible range. As a result of experiments, we provides a suggestition that ZnO thin Films can be effectively used as the DSSC substrate Materials.

  • PDF

Effects of Modified Atmosphere Packaging on the Quality of Chitosan and $CaCl_2$ Coated Mushroom (Agaricus bisporus) (환경가스조절 포장이 키토산 및 $CaCl_2$로 코팅 처리된 양송이 버섯의 품질에 미치는 영향)

  • Lee, Jin-Sil
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1308-1314
    • /
    • 1999
  • The effects of modified atmosphere(MA) packaging and coating on the quality of mushroom (Agaricus bisporus) were investigated. Whole mushrooms(100 g) were packed with polyvinyl chloride(PVC) film wrap, PD941 and PD961 film bags and were stored in a chamber at $12^{\circ}C$ and 80% RH for 6 days. Gas composition of packages, respiration rate, weight loss, color and maturity index of MA packaged mushrooms were examined. The wrap packaged mushrooms showed different level of internal $CO_2$ concentrations among water washed, chitosan coated and $CaCl_2$ coated subgroups significantly at 5% level. The maximum $CO_2$ concentration of PD941 and PD961 packages for all coated showed $4.1{\sim}4.7%$ and $10.4{\sim}11.7%$, respectively, for the first day. PD961 package showed the lowest $O_2$ concentration compared to other groups. There were no significant respiration rate differences between wrap packed and PD941 packaged. Respiration rate of water washed. chitosan coated and $CaCl_2$ coated in PD961 packaged was 192 mg, 226 mg and 245 mg, respectively. Maturity index of PD961 packaged were not significantly different among the water washed, chitosan and $CaCl_2$ coated packages. Chitosan coating showed a negative effect on color change of mushrooms. The weight loss of 961 packaged was lower $(7.0{\sim}8.0%)$ that those of wrap packaged and PD941 packaged.

  • PDF

Fabrication and Operating Properties of Nb Silicide-coated Si-tip Field Emitter Arrays (니오비움 실리사이드가 코팅된 실리콘 팁 전계 방출 소자의 제조 및 동작 특성)

  • Ju, Byeong-Kwon;Park, Jae-Seok;Lee, Sangjo;Kim, Hoon;Lee, Yun-Hi;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.7
    • /
    • pp.521-524
    • /
    • 1999
  • Nb silicide was formed on the Si micro-tip arrays in order to improve field emission properties of Si-tip field emitter array. After silicidization of the tips, the etch-back process, by which gate insulator, gate electrode and photoresist were deposited sequentially and gate holes were defined by removing gradually the photoresist by $O_2$ plasma from the surface, was applied. Si nitride film was used as a protective layer in order to prevent oxygen from diffusion into Nb silicide layer and it was identified that the NbSi2 was formed through annealing in $N_2$ ambient at $1100^{\circ}C$ for 1 hour. By the Nb silicide coating on Si tips, the turn-on voltage was decreased from 52.1 V to 32.3 V and average current fluctuation for 1 hour was also reduced from 5% to 2%. Also, the fabricated Nb silicide-coated Si tip FEA emitted electrons toward the phosphor and light emission was obtained at the gate voltage of 40~50 V.

  • PDF

Evaluation of Indoor Air Quality Improvement by Formaldehyde Emission Rate in School Indoor Environment Using Mass Balance (물질수지를 이용한 학교 실내환경의 포름알데히드(HCHO) 배출량 산정에 의한 실내공기질 개선 평가)

  • Yang, Won-Ho;Son, Bu-Soon;Kim, Dae-Won;Kim, Young-Hee;Byeon, Jae-Cheol;Jung, Soon-won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.160-165
    • /
    • 2005
  • Schools have significant and serious indoor environmental health problem, of which indoor air quality (IAQ) in school building may affect the health of the students and indirectly affect learning performance. Schools are of special concern when regarding indoor exposure to air pollutants, because students are particularly sensitive to pollutants and spend a significant amount of time in that environment. Therefore researches for improvement of indoor air quality have been developed such as installation of air cleaning device, ventilation system, titanium dioxide(TiO2) coating and so on. However, it is difficult to evaluate the magnitude of improvement of indoor air quality in field study because indoor air quality can be affected by source generation, outdoor air level, ventilation, decay by reaction, temperature, humidity, mixing condition and so on. In this study, evaluation of reduction of formaldehyde emission rate in school indoor environments by far-Infrared ray coating material was carried out using mass balance model in indoor environment. we proposed the evaluation method of magnitude of improvement in indoor air quality, considering outdoor level and ventilation. Since simple indoor concentration measurements could not properly evaluate the indoor air quality, outdoor level and ventilation should be considered when evaluate the indoor air quality.

Electrochemical Oxygen Evolution Reaction on NixFe3-xO4 (0 ≤ x ≤ 1.0) in Alkaline Medium at 25℃

  • Pankaj, Chauhan;Basant, Lal
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.497-503
    • /
    • 2022
  • Spinel ferrites (NixFe3-xO4; x = 0.25, 0.5, 0.75 and 1.0) have been prepared at 550℃ by egg white auto-combustion route using egg white at 550℃ and characterized by physicochemical (TGA, IR, XRD, and SEM) and electrochemical (CV and Tafel polarization) techniques. The presence of characteristic vibration peaks in FT-IR and reflection planes in XRD spectra confirmed the formation of spinel ferrites. The prepared oxides were transformed into oxide film on glassy carbon electrodes by coating oxide powder ink using the nafion solution and investigated their electrocatalytic performance for OER in an alkaline solution. The cyclic voltammograms of the oxide electrode did not show any redox peaks in oxygen overpotential regions. The iR-free Tafel polarization curves exhibited two Tafel slopes (b1 = 59-90 mV decade-1 and b2 = 92-124 mV decade-1) in lower and higher over potential regions, respectively. Ni-substitution in oxide matrix significantly improved the electrocatalytic activity for oxygen evolution reaction. Based on the current density for OER, the 0.75 mol Ni-substituted oxide electrode was found to be the most active electrode among the prepared oxides and showed the highest value of apparent current density (~9 mA cm-2 at 0.85 V) and lowest Tafel slope (59 mV decade-1). The OER on oxide electrodes occurred via the formation of chemisorbed intermediate on the active sites of the oxide electrode and follow the second-order mechanism.

Preparation and Performance Evaluation of Zinc Phosphate-Coated Mica Anticorrrosive Pigment (운모상에 인산아연이 도포된 방청안료의 제조 및 성능평가)

  • Lee, Yu Jin;Park, Seong Soo;Hong, Seong Soo;Lee, Seung Ho;Kim, Dae Sung;Lee, Gun Dae
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.257-263
    • /
    • 2013
  • The zinc phosphate-coated mica (ZP/mica) pigments were prepared using phosphoric acid, zinc nitrate and mica as starting materials, and used as anticorrosive pigments. The scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were used to observe the morphology and crystal structure of prepared pigments. The prepared pigments were incorporated into an epoxy binder to prepare coating and the corrosion inhibition performance of the pigments was evaluated using electrochemical impedance spectroscopy (EIS). It was found that the anticorrosive performance of the ZP/mica pigment prepared at $70^{\circ}C$ was the better than that prepared at $20^{\circ}C$. The formation of ZnO, in addition to $Zn_3(PO_4)_2{\cdot}2H_2O$, was observed on ZP/mica pigment prepared at $70^{\circ}C$. The excellent anticorrosive performance of ZP/mica pigment could be ascribed to the synergistic effect with electrochemical anticorrosive mechanism from zinc compounds on mica and barrier anticorrosive mechanism from lamellar mica.

Sintering and Characterization of SiC-matrix Composite Including TRISO Particles (TRISO 입자를 포함하는 SiC 복합소결체의 소결 및 특성 평가)

  • Lee, Hyeon-Geun;Kim, Daejong;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.418-423
    • /
    • 2014
  • Fully ceramic micro encapsulated (FCM) nuclear fuel is a concept recently proposed for enhancing the stability of nuclear fuel. FCM nuclear fuel consists of tristructural-isotropic (TRISO) fuel particles within a SiC matrix. Each TRISO fuel particle is composed of a $UO_2$ kernel and a PyC/SiC/PyC tri-layer which protects the kernel. The SiC ceramic matrix is created by sintering. In this FCM fuel concept, fission products are protected twice, by the TRISO coating layer and by the SiC ceramic. The SiC ceramic has proven attractive for fuel applications owing to its low neutron-absorption cross-section, excellent irradiation resistivity, and high thermal conductivity. In this study, a SiC-matrix composite containing TRISO particles was sintered by hot pressing with $Al_2O_3-Y_2O_3$ additive system. Various sintering conditions were investigated to obtain a relative density greater than 95%. The internal distribution of TRISO particles within the SiC-matrix composite was observed using an x-ray radiograph. The fracture of the TRISO particles was investigated by means of analysis of the cross-section of the SiC-matrix composite.