• Title/Summary/Keyword: $In_2O_3$ coating

Search Result 1,072, Processing Time 0.032 seconds

A Study on the Effect of the Thickness of Bond Coating on the Thermal Stresses of a Sprayed Thermal Barrier Coating (접착층의 두께가 용사 열차폐 코팅의 열응력에 미치는 영향에 관한 연구)

  • 김형남
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.221-227
    • /
    • 2001
  • Based on the principle of complementary energy, an analytical method is developed which focuses on the end effects for determining thermal stress distributions in a three-layered beam. This method gives the stress distributions which completely satisfy the stress-free boundary conditions. A numerical example is given in order to verify this method. The results show that the present analytical solutions have the values of stress in excellent agreement with the solutions derived by other investigators. Using this method, the effects of the thickness of bond coat on the thermal stresses of a typical sprayed thermal barrier coating, which consists of IN738LC substrate, MCrAIY bond coat and ZrO$_2$-8wt%Y$_2$O$_3$top coat, were investigated.

  • PDF

Pain Relieving Effect of Sucrose Coating Pacifier in Neonates (신생아 통증완화를 위한 자당 코팅 노리개 젖꼭지의 적용 효과)

  • Chung Yoon-Chung;Cho Kyoul-Ja
    • Child Health Nursing Research
    • /
    • v.11 no.3
    • /
    • pp.356-364
    • /
    • 2005
  • Purpose: This study is to assess and compare the analgegic effects of $25\%$ sucrose coating pacifier and pacifier. Method: The participants are 75 healthy infants of neonatal age 1-7 days and randomized to receive heel prick before 2 minutes to blood sampling and physiological test in Nursery of A Medical Center from 24. January to 28, February, 2003. The experimental group assigned to one of three treatment groups: no treatment, a pacifier, $25\%$ sucrose coating pacifier. Collected data were analyzed with the SPSS 11.0 program using $x^2$-test, one-way ANOVA and Scheffe, repeated mesured ANOVA. Results: The pain score of $25\%$ sucrose coating pacifier is lower than no treatment group and pacifier group. In heart rate, there were statistical significant differences between three groups. In repiratory rate, there were no statistical significant differences between three groups. In $SaO_2$, there were statistical significant difference between three groups. Conclusion: The $25\%$ sucrose coating pacifier showed pain relief effect in behavior responses and heart rate and $SaO_2$. Accordingly, the sucrose coating pacifier should be applied nursing intervention for simple pain management as heel prick.

  • PDF

Electrochemical Properties of Cathode according to the Type of Sulfide Electrolyte and the Application of Surface Coating

  • Yoon, Da Hye;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.126-136
    • /
    • 2021
  • The electrochemical performance of all-solid-state cells (ASSCs) based on sulfide electrolytes is critically affected by the undesirable interfacial reactions between oxide cathodes and sulfide electrolytes because of the high reactivity of sulfide electrolytes. Based on the concept that the interfacial reactions are highly dependent on the type of sulfide electrolyte, the electrochemical properties of the ASSCs prepared using three types of sulfide electrolytes were observed and compared. The Li2MoO4-LiI coating layer was also introduced to suppress the interfacial reactions. The cells using argyrodite electrolyte exhibited a higher capacity and Coulombic efficiency than the cells using 75Li2S-22P2S5-3Li2SO4 and Li7P3S11 electrolytes, indicating that the argyrodite electrolyte is less reactive with cathodes than other electrolytes. Moreover, the introduction of Li2MoO4-LiI coating on the cathode surface significantly enhanced the electrochemical performance of ASSCs because of the protection of coating layer. Pulverization of argyrodite electrolyte is also effective in increasing the capacity of cells because the smaller size of electrolyte particles improved the contact stability between the cathode and the sulfide electrolyte. The cyclic performance of cells was also enhanced by pulverized electrolyte, which is also associated with improved contact stability at the cathode/electrolyte. These results show that the introduction of Li2MoO4-LiI coating and the use of pulverized sulfide electrolyte can exhibit a synergic effect of suppressed interfacial reaction by the coating layer and improved contact stability owing to the small particle size of electrolyte.

Effect of Precursor Ratio on the Properties of Inorganic-Organic Hybrid TiO2-SiO2 Coating (유무기 TiO2-SiO2 혼성코팅에 미치는 전구체 배합비율의 영향)

  • Kim, Dong Kyu;Maeng, Wan Young
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.271-280
    • /
    • 2016
  • When a single inorganic precursor is used for the synthesis of a sol-gel coating, there is a problem of cracking on the surface of coating layer. In order to solve this problem of surface cracking, we synthesized inorganic-organic coatings that have hybrid properties of inorganic and organic materials. Sols of various ratios (1:0.07, 0.2, 0.41, 0.82, 1.64, 3.26, 6.54, 13.2) of an inorganic precursor of Tetrabutylorthotitanate ($Ti(OBu)_4$, TBOT) and an organic precursor of ${\gamma}$-Methacryloxy propyltrimethoxysilane (MAPTS) were prepared and coated on stainless steels (SUS316L) by dip coating method. The binding structure and the physical properties of the synthesized coatings were analyzed by FT-IR, FE-SEM, FIB (Focused Ion Beam), and a nano-indenter. Dynamic polarization testing and EIS (electrical impedance spectroscopy) were carried out to evaluate the micro-defects and the corrosion properties of the coatings. The prepared coatings show hybrid properties of inorganic oxides and organic materials. Crack free coatings were prepared when the MAPTS ratio was above a critical value. As the MAPTS ratio increased, the thickness and the corrosion resistance increased, and the hardness decreased.

Real-time controlled deposition of anti-reflection and high-reflection coatings for semiconductor laser (반도체 레이저 단면의 실시간 무반사 및 고반사 코팅)

  • 김효상;박흥진;황보창권;김부균;김형문;주흥로
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.395-402
    • /
    • 1997
  • We have obtained the optimum thickness of anti-reflection(AR) coating on one of facets of a $\1.55mu\textrm{m}$ InGaAsP MQW FP semiconductor laser by in-site monitoring of the light emitted from the rear facet during the film deposition on the fore facet. The optimum thickness of $SiO_x$ thin film whose refractive index is 1.85 was found to be 188 nm. The reflectivity of the coated facet was calculated by the threshold current ratio of before and after AR coating, which was obtained from exprimental data, and it was about 2$\times$ $10^{-4}$. The results show that the output power is increased by 87% at bias current 60 mA, the slope efficiency is increased by 3.4 times, and the threshold current is increased by 2.64 times. By in-situ depositing of the $Si/SiO_2$ thin film HR coating on the rear facet, the output power was increased by 160% than before the AR and HR coatings, the slope efficiency was increased by 3.8 times, the threshold current was increased by 1.07 times, which is similar to the value of before AR coating. Due to the AR and HR coatings the output light power characteristics were enhanced.

  • PDF

Deposition of Solar Selective Coatings for High Temperature Applications (고온용 태양 선택흡수막의 제작)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.33-42
    • /
    • 2008
  • Zr-O ($Zr-ZrO_2$) cermets solar selective coatings with a double cermets layer film structure were prepared using a DC (direct current) magnetron sputtering method. The typical film structure from surface to bottom substrate were an $Al_2O_3$ anti-reflection layer on a double Zr-O cermets layer on an Al metal infrared reflection layer. Optical properties of optimized Zr-O cermets solar selective coating had an absorptance of ${\alpha}\;=\;0.95$ and thermal omittance of ${\epsilon}\;=\;0.10\;(100^{\circ}C)$. The absorbing layer of Zr-O cermets coatings on glass and silicon substrate was identified as being amorphous by using XRD. AFM showed that ZF-O cermets layers were very smooth and their surface roughness were approximately $0.1{\sim}0.2 nm$. The chemical analysis of the cermets coatings were determined by using XPS. Chemical shift of photoelectron binding energy was occurred due to the change of Zr-O cermets coating structure deposited with increase in oxygen flow rate. The result of thermal stability test showed that the Zr-O cermets solar selective coating was stable for use at temperature below $350^{\circ}C$.

Improvement of Photo-stability for p-Aramid Fibers by SiO2/TiO2 Sol-Gel Method (SiO2/TiO2 sol-gel법을 이용한 p-아라미드 섬유의 내광성 증진)

  • Lee, Young-Il;Jung, Min-Hyuck;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.172-180
    • /
    • 2013
  • Aramid fibers are being used increasingly in a wide range of application due to low density, high specific strength, high modulus, and high thermal resistance. But owing to its special physical and chemical structures, it is sensitive to absorb the ultraviolet light which will degrade the fiber's useful mechanical properties and structure. In this paper, the sol-gel technique was used to improve the photo-stability of p-aramid fibers. $TiO_2$, modified $SiO_2$/$TiO_2$ sol were used as coating solutions. The influence of the such coatings on the photo-stability of p-aramid fiber was investigated by an accelerated photo-ageing method using xenon lamp. The photo-stability of p-aramid fiber showed obvious improvement after the modified silica binding coating. But the amorphous $TiO_2$ sol coatings showed a negative effect. After 144h light exposure, the modified silane binder-coated fibers showed less degradation in mechanical properties with the retained tensile strength greater than about 70% of the original value.

A Study on Plasma Corrosion Resistance and Cleaning Process of Yttrium-based Materials using Atmospheric Plasma Spray Coating (Atmospheric Plasma Spray코팅을 이용한 Yttrium계 소재의 내플라즈마성 및 세정 공정에 관한 연구)

  • Kwon, Hyuksung;Kim, Minjoong;So, Jongho;Shin, Jae-Soo;Chung, Chin-Wook;Maeng, SeonJeong;Yun, Ju-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.74-79
    • /
    • 2022
  • In this study, the plasma corrosion resistance and the change in the number of contamination particles generated using the plasma etching process and cleaning process of coating parts for semiconductor plasma etching equipment were investigated. As the coating method, atmospheric plasma spray (APS) was used, and the powder materials were Y2O3 and Y3Al5O12 (YAG). There was a clear difference in the densities of the coatings due to the difference in solubility due to the melting point of the powdered material. As a plasma environment, a mixed gas of CF4, O2, and Ar was used, and the etching process was performed at 200 W for 60 min. After the plasma etching process, a fluorinated film was formed on the surface, and it was confirmed that the plasma resistance was lowered and contaminant particles were generated. We performed a surface cleaning process using piranha solution(H2SO4(3):H2O2(1)) to remove the defect-causing surface fluorinated film. APS-Y2O3 and APS-YAG coatings commonly increased the number of defects (pores, cracks) on the coating surface by plasma etching and cleaning processes. As a result, it was confirmed that the generation of contamination particles increased and the breakdown voltage decreased. In particular, in the case of APS-YAG under the same cleaning process conditions, some of the fluorinated film remained and surface defects increased, which accelerated the increase in the number of contamination particles after cleaning. These results suggest that contaminating particles and the breakdown voltage that causes defects in semiconductor devices can be controlled through the optimization of the APS coating process and cleaning process.

Properties of Self-hardened Inorganic Coating in the System Alumina-Silica-Calcium Oxide by the Reaction with Alkalies (알칼리 반응에 의한 알루미나-실리카-산화칼슘계 무기질 자기경화 코팅의 특성)

  • Jeon, Chang-Seob;Song, Tea-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.381-386
    • /
    • 2010
  • Some basic properties of inorganic coatings hardened by the room temperature reaction with alkalies were examined. The coating paste was prepared from the powders in the system $Al_2O_3-SiO_2$-CaO using blast furnace slag, fly ash and amorphous ceramic fiber after mixing with a solution of sodium hydroxide and water glass. The mineralogical and morphological examinations were performed for the coatings prepared at room temperature and after heating to $1200^{\circ}C$ respectively. The binding force of the coating hardened at room temperature was caused by the formation of fairly dense matrix mainly composed of oyelite-containing amorphous phase formed by the reaction between blast furnace slag and alkali solution. At the temperature, fly ash and ceramic fiber was not reacted but imbedded in the binding phase, giving the fluidity to the paste and reinforcing the coating respectively. During heating up to $1200^{\circ}C$, instead of a break in the coating, anorthite and gehlenite was crystallized out by the reaction among the binding phase and unreacted components in ternary system. The crystallization of these minerals revealed to be a reason that the coating maintains dense morphology after heating. The maintenance of binding force after heat treatment is seemed to be also caused by the formation of welldispersed fiber-like mineral phase which is originated from the shape of the amorphous ceramic fiber used as a raw materials.

Anti-Reflection Coating Application of SixOy-SixNy Stacked-Layer Fabricated by Reactive Sputtering (반응성 스퍼터링으로 제작된 SixOy-SixNy 적층구조의 반사방지 코팅 응용)

  • Gim, Tzang-Jo;Lee, Boong-Joo;Shina, Paik-Kyun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.341-346
    • /
    • 2010
  • In this paper, anti-reflection coating was investigated for decreasing the reflection in visible range of 400~650 [nm] through four staked layers of $Si_xO_y$ and $Si_xN_y$ thin films prepared by reactive sputtering method. Si single crystal of 6 [inch] diameter was used as a sputtering target. Ar and $O_2$ gases were used as sputtering gases for reactive sputtering for the $Si_xO_y$ thin film, and Ar and $N_2$ gases were used for reactive sputtering for the $Si_xN_y$ thin film. DC pulse power of 1900 [W] was used for the reactive sputtering. Refractive index and deposition rate were 1.50 and 2.3 [nm/sec] for the $Si_xO_y$, and 1.94 and 1.8 [nm/sec] for the $Si_xN_y$ thin film, respectively. Considering the simulation of the four layer anti-reflection coating structure with the above mentioned films, the $Si_xO_y-Si_xN_y$ stacked four-layer structure was prepared. The reflection measurement result for that structure showed that a "W" shaped anti-reflection was obtained successfully with a reflection of 1.7 [%] at 550 [nm] region and a reflection of 1 [%] at 400~650 [nm] range.