• Title/Summary/Keyword: $Idh3{\alpha}$

Search Result 2, Processing Time 0.021 seconds

Up-regulation of Idh3α causes reduction of neuronal differentiation in PC12 cells

  • Cho, Sun-A;Seo, Min-Ji;Ko, Je-Yeong;Shim, Jung-Hee;Yoo, Jin;Kim, Jung-Hee;Kim, Se-Yoon;Ryu, Na-Kyung;Park, Eun-Young;Lee, Han-Woong;Lee, Yeon-Su;Bahk, Young-Yil;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.369-374
    • /
    • 2010
  • The PC12 is the widely used cell line to study neuronal differentiation. We had extensively investigated the details of protein expression in differentiated PC12 cells by proteomic analysis. The cells were incubated at the presence of nerve growth factor. We had analyzed the expression changes in the differentiating PC12 cells by 2-dimensional electrophoresis and the identification of the proteins using MALDI-TOF MS. By comparing expression pattern in the time course, we identified the candidate genes which are associated with neuronal differentiation. Among these genes, we performed real-time PCR analysis to validate $Idh3{\alpha}$ expression by the time course. To identify the function of $Idh3{\alpha}$ in neuronal differentiation stage, the transfection of $Idh3{\alpha}$ to PC12 cells was performed. As a result, we proved that up-regulation of $Idh3{\alpha}$ causes reduction in neural differentiation of PC12 cells. Based on these data, we suggest that $Idh3{\alpha}$ plays a role to the neuronal differentiation.

Regulation of NAD+- Specific Isocitrate Dehydrogenase from Pythium ultimum

  • Kim, Hak-Ryul;Weete, John D.
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.385-392
    • /
    • 1999
  • The $NAD^+$-specific activity of a dual coenzyme-specific isocitrate dehydrogenase (IDH; EC 1.1.1.41) from the primitive fungus Pythium ultimum was investigated to elucidate the regulatory factors that may influence the intracellular distribution of carbon and the availability of intermediates, e.g. citrate, for fatty acid synthesis. Inhibition of $NAD^+$-IDH activity by diphospho- and triphosphonucleotides (ATP, ADP, and GTP) reflected the sensitivity of this enzyme to cellular energy charge even though monophosphonucleotides (AMP and GMP) had little effect on activity. NADPH, but not NADH, substantially inhibited $NAD^+$-IDH activity, showing noncompetitive inhibition with isocitrate. Oxalacetate and ${\alpha}$-ketoglutarate showed competitive inhibition with isocitrate, while citrate and cis-aconitate showed mixed-noncompetitive inhibition with isocitrate. Inhibition by these substances ranged from 29 to 46% at 10 mM. The inhibitory effect of oxalacetate was increased synergistically by glyoxylate, which alone caused 31% uncompetitive inhibition at 10 mM, and a mixture of the two substances at 1 mM each showed 98% inhibition of $NAD^+$-IDH activity. The regulation of $NAD^+$-IDH in Pythium ultimum seems to be a complex process involving mitochondrial metabolites. The addition of glyoxylate (3 mM) and oxalacetate (3 mM) to the culture medium resulted in the production of 49% more lipid by P. ultimum.

  • PDF