• Title/Summary/Keyword: $Hg_2^{2+}$ ions

Search Result 214, Processing Time 0.028 seconds

Synthesis and Cations Binding Properties of a New C,N-bipyrazolic Ligand

  • Attayibat, Ahmed;Radi, Smaail;Ramdani, Abdelkrim;Lekchiri, Yahya;Hacht, Brahim;Bacquet, Maryse;Willai, Stephanie;Morcellet, Michel
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1648-1650
    • /
    • 2006
  • The synthesis of a new C,N-bipyrazolic ligand with a functionalized donor-group is reported. The binding properties of the ligand and two other ligand of similar structures towards heavy metal ions ($Hg^{2+}$, $Cd^{2+}$, $Pb^{2+}$, $Zn^{2+}$, $Cu^{2+}$) and alkaline metal ions ($K^+$, $Na^{+}$, $Li^+$) were studied by a liquid-liquid extraction process and the extracted cation percentage was determined by atomic absorption measurements. The selectivity of the ligand to Hg(II) has been mentioned in the abstract.

The Egect of Heavy Metal tons on the Differentiation of Cultured Muscle Cells of Chick Embryo (배양계배 근세포의 분화과정에 미치는 중금속 이온의 영향)

  • 위인선;이종빈
    • The Korean Journal of Zoology
    • /
    • v.30 no.4
    • /
    • pp.410-416
    • /
    • 1987
  • The effect of heavy metal ions on the synthesis of proteins in cultured chick embryonic muscle cells were examined by labeling the cellular proteins with 35S-methionine and the surface proteins with Nalssl and lactoperokidase. The protein pattern in the cells cultured for 48 hrs showed little or no difference whether or not the cells were treated with any of the metal ions including Cu2+, Cd2+ and Hg2+, which are known to block the fusion of mypblasts. However, a 43kd protein disappeared from the control cells cultured for 72 hrs but remained unchanged in the cells treated with the metal ions. When analyzed for the syntheiic pattern of membrane proteins, addition of the ions (particularly of Cda+ and Cr3+) caused a marked increase in the level of 66kd protein, as compared to that in the untreated cells. By contrast, the level of 29kd protein was much higher in the control cells than in the cells treated with the metal ions. These results suggest that the heavy metal ions appear to block the degradation of 43kd soluble protein and 66kd membrane protein, perhaps by inhibiting a metalloprotease, which may be essential for the myogenic process of embryonic muscle cells.

  • PDF

Recent Progress on Adsorptive Removal of Cd(II), Hg(II), and Pb(II) Ions by Post-synthetically Modified Metal-organic Frameworks and Chemically Modified Activated Carbons

  • Rallapalli, Phani Brahma Somayajulu;Choi, Suk Soon;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.133-144
    • /
    • 2022
  • Fast-paced industrial and agricultural development generates large quantities of hazardous heavy metals (HMs), which are extremely damaging to individuals and the environment. Research in both academia and industry has been spurred by the need for HMs to be removed from water bodies. Advanced materials are being developed to replace existing water purification technologies or to introduce cutting-edge solutions that solve challenges such as cost efficacy, easy production, diverse metal removal, and regenerability. Water treatment industries are increasingly interested in activated carbon because of its high adsorption capacity for HMs adsorption. Furthermore, because of its huge surface area, abundant functional groups on surface, and optimal pore diameter, the modified activated carbon has the potential to be used as an efficient adsorbent. Metal-organic frameworks (MOFs), a novel organic-inorganic hybrid porous materials, sparked an interest in the elimination of HMs via adsorption. This is due to the their highly porous nature, large surface area, abundance of exposed adsorptive sites, and post-synthetic modification (PSM) ability. This review introduces PSM methods for MOFs, chemical modification of activated carbons (ACs), and current advancements in the elimination of Pb2+, Hg2+, and Cd2+ ions from water using modified MOFs and ACs via adsorption.

Genetic Characteristics of Arsenic Compounds-Resistant Bacteria Isolated from Stream Water (하천에서 분리한 비소 내성세균의 유전적 특성)

  • 정미경;이호자
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.63-68
    • /
    • 1991
  • Several arsenic compound-resistant bacteria were isolated from Jung-Rang stream. The isolates, D-3, D-12, and D-14 were characterized phenotypically and genetically, and identified as Serratia liquefaciens, Klebsiella oxytoca, and Klebsiella pneumoniae, respectively. A plasmid of 67kb was found in Klebsiella oxytoca D-12 and designated as pMH12. Transfer of this plasmid from D-12 to E. coli HB101 was occurred, and the resulting transconjugant strains expressed the same level of heavy metal resistance as the donor strain. The physical presence of this plasmid in transconjugant was detected with agarose gel electrophoresis. Arsenite-sensitive derivatives of isolate D-12 were obtained with Mitomycin C treatment which cured pMH12. Antibiotics and heavy metal resistances were also examined to be used as a proper marker for the isolates in gene cloning. Isolate D-12 has resistance to several heavy metal ions such as $Cd^{2+}$ , $Zn^{2+}$ and $Hg^{ 2+}$ Also, all the other arsenite resistant isolates showed resistance to several heavy metal ions and antibiotics.

  • PDF

Heavy Metal Ion Detection in Living Cell Using Fluorescent Chemosensor (형광화학센서를 이용한 살아있는 세포 내에서의 중금속이온검출)

  • Kwon, Pil-Seung;Kim, Jin-Kyung;Kim, Jong-Wan
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.451-459
    • /
    • 2010
  • The fluorescence detection of intracellular metal ions are high interest in the fields of organic molecular chemistry and cellular biology. This study was purposed to detection for mercury and zinc in the cell using fluorescent chemosensor (FS). FS exhibits a weak fluorescence, but emits strong fluorescence upon Zn$^{2+}$ complexation. The increased fluorescence of the 2FS/Zn$^{2+}$ can be quenched completely by addition of only 1 equiv of Hg$^{2+}$ with the formation of complex FS-Hg$^{2+}$. Four cell lines (LLC-MK2, Hela, HT29 and AMC-HN3) were used for fluorescence imaging by confocal microscope. The cell viability MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was evaluated after cell treatment of FS, Zn$^{2+}$, FS-Zn$^{2+}$, Hg$^{2+}$ on LLC-MK2 cell line. The cytotoxicity of FS was showed to viability over 80%. This study has shown that FS can be detected for selective imaging of Zn$^{2+}$ and Hg$^{2+}$ in living cells.

Spectroscopic, Thermal and Biological Studies of Zn(II), Cd(II) and Hg(II) Complexes Derived from 3-Aminopyridine and Nitrite Ion

  • Dhaveethu, Karuthakannan;Ramachandramoorthy, Thiagarajan;Thirunavukkarasu, Kandasamy
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.712-720
    • /
    • 2013
  • Microwave assisted syntheses of Zn(II), Cd(II) and Hg(II) complexes with 3-aminopyridine (3AP) and nitrite ($NO_2{^-}$) ions have been reported. The metal complexes were characterized by elemental analyses, molar conductance, IR, Far-IR, electronic, NMR ($^1H$, $^{13}C$), thermal and electron impact mass spectral studies. The spectroscopic studies reveal the composition, the nature of nitrite ligand in the complexes, electronic transitions, chemical environments of C and H atoms thermal degradation of the complexes. On the basis of characterization data, distorted tetrahedral geometry is suggested for Zn(II), Cd(II) and Hg(II) complexes. The organic ligand (3AP) and their metal complexes were screened against gram negative pathogenic bacteria and fungi in vitro. The results are compared with our previous report J. Korean Chem. Soc. 2013, 57, 341 on 4-aminopyridine and nitrite ion complexes of the same metal ions.

Ion-Exchange Chromatography of Some Toxic Heavy Metal Ions (인체유해 중금속이온의 이온교환 크로마토그라피)

  • Lee, Dai Woon;Yu, Euy Kyung
    • 한국해양학회지
    • /
    • v.10 no.1
    • /
    • pp.33-40
    • /
    • 1975
  • The ion exchange sorption and elution behavior of toxic heavy metal ions, such as Hg(II) and Zn(II), have been studied in aqueous and methanolic media of MCl (M: K, Na and NH$\_$4/). The ion exchange resins studied are Dowex 1-X8, Cl$\^$-/ (50-100 or 200-400 mesh) and Dowex 50W-X8, M$\^$+/ form (M: K, Na, NH$\_$4/ and H). the sorption and elution of metal ion on the resin is largely due to the formation of the anionic chlororocomplex of metal ion. The addition of methanol in the medium contributes markedly to the distribution data. In order to apply this work for the treatment of polluted sea water with toxic heavy metal ions, removal experiment of the metal ions from the synthetic sample solution was investigated.

  • PDF

Syntheses and Ion Selectivities of Dimeric Rhodamine 6G Chemosensors

  • Chang, Seung Hyun;Choi, Jin-Wook;Chung, Kwang-Bo
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1273-1278
    • /
    • 2013
  • Novel rhodamine 6G fluorescent chemosensors 1 and 2 for the detection of transition metal cations were synthesized through the condensation of rhodamine 6G ethylenediamine with each of 2-hydroxy-1-naphthaldehyde and 2,6-pyridinedicarbaldehyde, respectively. 1 and 2 were characterized using $^{13}C$ NMR, $^1H$ NMR and mass spectroscopy. Fluorometric and colorimetric measurements involving various metal ions revealed the ring opening of the rhodamine 6G spirocycle framework. In the absence of metal cations, 2 was colorless and non-fluorescent, whereas the addition of metal cations ($Hg^{2+}$ and others) changed the color to pink, accompanied by the appearance of an orange fluorescence. The chemosensors exhibited high selectivity for $Hg^{2+}$ over other divalent first-row transition metals. The complexes of $Hg^{2+}$ with 1 and 2 were successfully isolated. A huge enhancement in the fluorescence for both one- and two-photon excitations makes these compounds suitable candidates to be used for fluorescent labeling of biological systems.

Fluorescence Sensing Properties of 2-(2'-Hydroxyphenyl)quinoline and Derivatives

  • Helal, Aasif;Lee, Sang-Hoon;Ren, Wen Xiu;Cho, Chan-Sik;Kim, Hong-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1599-1603
    • /
    • 2011
  • Novel chemosensors based on 2-(2'-hydroxyphenyl)quinoline were prepared and evaluated for sensing metal cations. The photophysical properties of chemosensors 1-3 were examined and their ion-selectivity was evaluated by measuring their fluorescent emission responses to alkali, alkaline earth, and transition metal ions. Chemosensors 1, 2 and 3 show ratiometric and enhanced fluorescence changes with transitional metals that are efficient fluorescence quenchers, especially 3 has a high binding constant with $Hg^{+2}$ in $CH_3CN$.

Immobilization Study of Inorganic Priority Pollutants in Soil with Amino Acids from Hydrolyzed Waste (재활용 아미노산을 이용한 토양 중의 무기 Priority Pollutants의 안정화 연구)

  • Bang, Jeong Hwan;Kim, Nam Jeong;Moon, Byoung Seok
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.2
    • /
    • pp.49-56
    • /
    • 2011
  • The hydroxide precipitation method is appropriate to distinguish free metal ions with complexed metal ions with amino acids. Optimum pH conditions of hydroxide precipitation were investigated using mixed amino acids which have similar composition ratio with hydrolyzed amino acids. When applied to soil samples immobilities of Hg, Cr, and Cu ion with mixed and hydrolyzed amino acids were reasonable. But those of Cd and Zn were not sufficient.

  • PDF