• Title/Summary/Keyword: $H_2S$ partial pressure

Search Result 80, Processing Time 0.025 seconds

Sputtering yield and defect energy level characteristics MgO protective layer according to $O_2$ partial pressure in AC-PDPs

  • Jung, S.J.;Son, C.G.;Song, K.B.;Cho, S.H.;Oh, H.J.;Cho, G.S.;Kang, S.O.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1384-1387
    • /
    • 2007
  • We have investigated the sputtering and secondary electron emission characteristics of MgO protective layer according to the $O_2$ partial pressure. The MgO layer have been deposited by electron beam evaporation method and have varied the $O_2$ partial pressure as 0, $5.2{\times}10^{-5}$, $1.0{\times}10^{-4}$, and $4.1{\times}10^{-4}$ Torr. It has been known that the secondary electron emission coefficient and the number of defect energy levels increased as the $O_2$ partial pressure increases. So we have investigated the property of sputtering yield according to the $O_2$ partial pressure. We have known that the sputtering yield deceases as the $O_2$ partial pressure increases by using the FIB system.

  • PDF

Effect of $H_2S$ Partial Pressure and pH of Test Solution on Hydrogen Induced Cracking of High Strength Low Alloy Steels

  • Kim, Wan Keun;Koh, Seong Ung;Kim, Kyoo Young;Yang, Boo Young;Jung, Hwan Kyo
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.236-241
    • /
    • 2005
  • Hydrogen induced cracking (HIC) is one of the hydrogen degradation phenomena of linepipe steels caused by $H_2S$ gas in the crude oil or natural gas. However, NACE TM0284-96 standard HIC test method is hard to satisfy the steel requirements for sour service application since it uses more severe environmental conditions than actual conditions. Therefore, in order to use steels effectively, it is required to evaluate HIC resistance of steels in the practical range of environmental severity. In this study, HIC resistance of two high strength low alloy (HSLA) steels being used as line pipe steels was evaluated in various test solutions with different $H_2S$ pressures and pH values. The results showed that the key parameter affecting crack area ratio (CAR) is $H_2S$ partial pressure of test solution when the pH value of test solution is not over 4. Hydrogen diffusivity was not a constant value, but it was rather affected by the hydrogen ion concentration (pH value) in the solution.

Hydrogenation of Naphthalene in a Tubing Bomb Microreactor (소형 회분식반응기를 이용한 나프탈렌수소화반응 연구)

  • 이영우
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.80-86
    • /
    • 1996
  • Naphthalene hydrogenation reaction was performed as a model reaction for coal liquefaction. Product distributions of tetralin and decalin are sensitive to reaction temperature and hydrogen pressure. At 380$^{\circ}C$, hydrogenation reaction using sulfided pellet catalysts gives poor reproducibility and several experimental methods are tried to examine its cause. It was inferred that H$_2$S had, most possibly, a great effect on this phenomena and the effect of H$_2$S was systematically investigated at 250$^{\circ}C$. It is possible that the intermediate hydroaromatic compound (tetralin) is maximized by changing the partial pressure of H$_2$S. It was identified that the partial pressure of H$_2$S could be another important factor in addition to the reaction time and temperature in coal liquefaction using sulfided catalysts.

  • PDF

Composition and interface quality control of AlGaN/GaN heterostructure and their 2DEG transport properties

  • Kee, Bong;Kim, H.J.;Na, H.S.;Kwon, S.Y.;Lim, S.K.;Yoon, Eui-Joon
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.3
    • /
    • pp.81-85
    • /
    • 2000
  • The effects of $NH_3$ flow rate and reactor pressure on Al composition and the interface of AlGaN/GaN heterostructure were studied. Equilibrium partial pressure of Ga and Al over AiGaN alloy was calculated as a function of growth pressure, $NH_3$flow rate and temperature. It was found equilbrium vapor pressure of Al is significantly lower than that of Ga, thus, the alloy composition mainly controlled by Ga partial pressure. We believe that more decomposition of Ga occur at lower $NH_3$ flow rate and higher growth pressure leads to preferred Al incorporation into AlGaN. The alloy composition gradient became larger at AlGaN/GaN heterointerface at higher reactor pressures, higher Al composition and low $NH_3$ flow rate. This composition gradient lowered sheet carrier concentration and electron mobility as well. We obtained an AlGaN/GaN heterostructure with sheet carrier density of ${\sim}2{\times}10^{13}cm^{-2}$ and mobility of 1250 and 5000 $cm^2$/Vs at 300 K and 100 K, respectively.

  • PDF

The Effects of $O_2$ Partial Prewwure on Soft Magnetic Properties of Fe-Hf-O Thin Films (Fe-Hf-O계 박막에서 산소 분압 변화가 박막특성에 미치는 영향)

  • 박진영;김종열;김광윤;한석희;김희중
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.243-248
    • /
    • 1997
  • The effect of $O_2$ partial pressure on microstructure and soft magnetic properties of as-deposited Fe-Hf-O thin film alloys, which are produced by rf magnetron sputtering method in $Ar+O_2$ mixed gas atmosphere, are investigated. Saturation magnetization ($4{\pi}M_s$) of Fe-Hf-O film were decreased with increasing $O_2$ partial pressure, the best soft magnetic properties exhibit at $O_2$ partial pressure of 10%. With further increase of $O_2$ partial pressure, soft magnetic properties decreased continuously. The $Fe_{82}Hf_{3.4}O_{14.6}$ film with $P_{O2}=10%$ exhibits good soft magnetic properties with $4{\pi}M_s=17.7kG$, $H_c=0.7Oe$ and ${\mu}_ {eff}$ (1~100 MHz)=2,500, respectively. The addition of O is effective in grain refinement. In case of $P_{O2}=15%$, it is observed that $Fe_3O_4$ compound is formed and high frequency soft magnetic properties are decrease. The electrical resistvity($\rho$) of Fe-Hf-O film is increased with increasing $O_2$ partial pressure. Electrical resistivity of $Fe_{82}Hf_{3.4}O_{14.6}$ film was 5 times higher than that of the film without oxygen. Thus, it is considered that the good magnetic properties of $Fe_{82}Hf_{3.4}O_{14.6}$ film results from decreasing the $\alpha$-Fe grain size by precipitates (Hf and O), high electrical resistivity.

  • PDF

The Characteristics of Biopellet Produced Upon Reactor Configuration in UASB System (UASB 공법에 있어서 반응조의 형상변화에 따른 입상슬러지의 특성에 관한 연구)

  • Min, Kyung Sok;Ahn, Young Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.679-688
    • /
    • 1994
  • Physicochemical and morphological characteristics of biopellets produced in "control" and modified UASB reactor were investigated to compare the reactor performance with regard to the hydrogen partial pressure. The characteristics of biopellet produced in modified UASB reactor operated with high hydrogen partial pressure were better than those of "control" reactor operated with relatively lower hydrogen partial pressure, therefore the hydrogen partial pressure effected greatly on the formation and stability of the biopellet. Furthermore, pellets from the UASB system with modified settler showed a better settleability and biomass holding capacity. The chemical composition of biopellet was distinctively different from that of common bacterial formula, $C_5H_7O_2N$. Biopellets was composed the large fraction of nitrogen in comparison with common anaerobic microbes. These results implicated the existence possibility of polypeptide-type extracellular polymer. The morphological characterization with SEM showed that microorganisms observed at surface of biopellet produced in modified UASB reactor operated with high $P_{H_2}$ condition were very similar in shape and size to the Methanobrevibactor arboriphilus-$H_2$ utilizing methanogen. The microorganisms was distinguished from those of "control" reactor operated with low $P_{H_2}$ condition. From these results, it could be explained the hydrogen partial pressure effects on pelletization mechanism.

  • PDF

The relations between second-stage temperatures and gases partial pressures at the stainless steel high vacuum chamber by cryogenic pumping (크라이오 펌프를 이용한 스테인레스 스틸 고진공용기 배기에서 2차 냉각판 온도와 용기 내부의 기체 부분압 관계)

  • Hong S. S.;Lim J. Y.;Shin Y. H.;Chung K. H.;Arakawa Ichiro
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.139-144
    • /
    • 2004
  • Recently, the importance of clean vacuum and partial pressure measurement of gas species has been increased in the vaccum process. In this study, the partial pressures of $H_2$, He, C, N, $O_2$, $H_2O $, Ar/2, $N_2$(CO), Ar, $CO_2$ were measured by residual gas analyzer according to temperature of cryogenic pump which is used to clean vacuum generation and compared. The experimental results showed that the cryopanel temperature was reached to 12K after 72 minutes of pumping and after 25hours, the partial pressures in percent were 24.9 %, 6.6%, 5.5 %, 2.2 %, 3.8%, 30.7%, 6.5%, 6.1 %, 5.5%, 8.2% for $H_2$, He, C, N, $O_2$, $H_2O $, Ar/2, $N_2$, Ar, $CO_2$ respectively. The dominant gases were $H_2$ and $H_2O $, and the partial pressures were relatively high compare to other gases.

Optimization of process variables in batch-type MOD process (일괄처리방식을 이용한 MOD 공정의 변수 최적화)

  • Chung, Kook-Chae;Yoo, Jai-Moo;Ko, Jae-Woong;Kim, Young-Kuk;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.23-25
    • /
    • 2006
  • Optimization of process variables, including oxygen and water partial pressure and also an nesting temperature, was performed in batch-type process to fabricate YBCO films on LaAlO3 single crystal. In this work, YBCO oxide powder was used as a starting precursor for metal-organic deposition(MOD)method. The precursor films were fabricated in batch furnace and they were converted to the epitaxial YBCO films at the same furnace with varying the process variables. The oxygen partial pressure was varied from 100ppm to 2000ppm and the water partial pressure from 1.2% to 12.2%. The window for optimal P(O2) was narrow about 700ppm for batch-type process. YBCO films in bathc-thype MOD process were optimized at 740-770oC and P(H2O) of 2.3%-7.3%.

Studies on Ionic Conduction in Ce0.95Eu0.05P2O7 at Intermediate Temperatures

  • Wang, Hongtao;Sun, Lin;Luo, Chunhua;Fan, Suhua
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1465-1468
    • /
    • 2014
  • In this study, an intermediate temperature ionic conductor, $Ce_{0.95}Eu_{0.05}P_2O_7$, was prepared by solid state reaction. The variation of conductivities with the pressure $pH_2O$ or time were studied. The highest conductivity of $Ce_{0.95}Eu_{0.05}P_2O_7$ sample was observed in dry air atmosphere at $300^{\circ}C$ to be $1.1{\times}10^{-4}S{\cdot}cm^{-1}$ and in wet air atmosphere ($pH_2O=7.4{\times}10^3Pa$) at $100^{\circ}C$ to be $1.4{\times}10^{-3}S{\cdot}cm^{-1}$, respectively. The log ${\sigma}$ ~ log ($pO_2$) plot result indicated that $Ce_{0.95}Eu_{0.05}P_2O_7$ was almost a pure ionic conductor under high oxygen partial pressure and a mixed conductor of ion and electron under low oxygen partial pressure.