• Title/Summary/Keyword: $H_2S$ gas

Search Result 1,761, Processing Time 0.041 seconds

Effect of Anodic Gas Compositions on the Overpotential in a Molten Carbonate Fuel Cell

  • Lee C.G.;Kim D.H.;Hong S.W.;Park S.H.;Lim H.C.
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • Anodic overpotential has been investigated with gas composition changes in a $100cm^2$ class molten carbonate fuel cell. The overpotential was measured with steady state polarization, reactant gas addition (RA), inert gas step addition (ISA), and electrochemical impedance spectroscopy (EIS) methods at different anodic inlet gas compositions, i.e., $H_2:CO_2:H_2O=0.69:0.17:0.14\;atm\;and\;H_2:CO_2:H_2O=0.33:0.33:0.33\;atm$, at a fixed $H_2$ flow rate. The results demonstrate that the anodic overpotential decreases with increasing $CO_2\;and\;H_2O$ flow rates, indicating the anode reaction is a gas-phase mass-transfer control process of the reactant species, $H_2,\;CO_2,\;and\;H_2O$. It was also found that the mass-transfer resistance due to the $H_2$ species slightly increases at higher $CO_2\;and\;H_2O$ flow rates. EIS showed reduction of the lower frequency semi-circle with increasing $H_2O\;and\;CO_2$ flow rate without affecting the high frequency semi-circle.

Removal of Hydrogen Sulfide Using Porous Ceramic Biofilter Inoculated with Sulfur Oxidizing Bacteria (황산화 균주가 부착된 다공성 세라믹 biofilter를 이용한 $H_2S$ 제거)

  • 박상진;조경숙
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.649-655
    • /
    • 1999
  • Biofiltration of polluted gas streams contained $H_2S$ was studied. The experiments were performed in a laboratory-scale reactor with a porous ceramic media inoculated with sulfur oxidizing bacterium, TAS which was isolated from activiated sludge. The concentration of $H_2S$ in the inlet gas varied from 109 to 3,841 ppm, at the various space velocities(SV) of 50 $h^{-1}$ to 250 $h^{-1}$. Various tests have been conducted to evaluate the effects of such parameters as pH, concentration of sulfate ion and retention time on the pressure drop and maximum elimination capacity. The removal efficiency of $H_2S$ decreased as the $H_2S$ concentration or gas velocity increased in the inlet gas. Pressure drop was insignificant in this system. The maximum elimination capacity could reach up to 16.35g-S/kg-dry packing material/day.

  • PDF

Construction of a Biofilter Immobilized with Rhodococcus sp. B261 for Removal of H2S Gas Generated by Livestock

  • Yun, Soon-Il
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.307-314
    • /
    • 2008
  • To explore the optimal conditions for the removal of $H_{2}S$ gas by biofiltration, various conditions, including inlet $H_{2}S$ concentration, flow rate, moisture, and cell number, were examined. Heterotrophic bacteria were isolated from the compost of the animal excreta. A strain that effectively removed $H_{2}S$ was selected and identified as Rhodococcus rhodochrous B261 by analysis of its 16S rDNA sequence. A cell number of $10^{7}\;cfu/g^{-}compost$ was sufficient to dominate the microbiota, and an effective removal was observed at $H_{2}S$ gas concentrations below 220 mg/L. The moisture content of 33-38% was suitable for activation of the microbial activity and delaying the desiccation. Higher flow rates resulted in lower removal rates of the $H_{2}S$ gas. Under the conditions of $10^7\;cfu/g^{-}compost$, $H_{2}S$ gas concentrations of 220 mg/L, and moisture content of 33-38%, the inlet $H_{2}S$ gas concentrations of 120 and 400 mg/L were completely removed for 34 and 12 days, respectively. The amount of sulfur removed was $2.99{\times}10^{-9}H_{2}S-S/cell$, which was suggested as the amount of sulfur removed by a single cell. The biofilter consisting of the compost and R. rhodochrous B261 could be suitable for a long-term biofilteration for the removal of $H_{2}S$ and other malodorous compounds.

Evaluation of 0ff-gas Characteristics in Vitrification Process of ion-Exchange Resin

  • Park, S. C.;Kim, H. S.;K. H. Yang;C. H. Yun;T. W. Hwang;S. W. Shin
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.83-92
    • /
    • 2001
  • The properties of off-gas generated from vitrification process of ion-exchange resin were characterized. Theoretical composition and flow rate of the off-gas were calculated based on chemical composition of resin and it's burning condition inside CCM. The calculated off-gas flow rate was 67.9Nm$^3$/h at the burning rate of 40kg/h. And the composition of off-gas was avaluated as $CO_2$(41.4%), steam(40.0%), $O_2$(13.3%), NO(3.6%), and SO$_2$(1.6%) in order. Then, actual flow rate and composition of off-gas were measured during pilot-scale demonstration tests and the results were compared with theoretical values. The actual flow rate of off-gas was about 1.6 times higher than theoretical one. The difference between theoretical and actual flow rates was caused by the in-leakage of air to the system, and the in-leakage rate was evaluated as 36.3Nm$^3$/h. Because of continuous change in the combustion parameters inside CCM, during demonstration tests, the concentration of toxic gases showed wide fluctuation. However, the concentration of CO, a barometer of incompleteness of combustion inside CCM, was stabilized soon. The result showed quasi-equilibrium state was achieved two hours after feeding of resin.

  • PDF

H2S Micro Gas Sensor Based on a SnO2-CuO Multi-layer Thin Film

  • Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.27-30
    • /
    • 2012
  • This paper proposes a micro gas sensor for measuring $H_2S$ gas. This is based on a $SnO_2$-CuO multi-layer thin film. The sensor has a silicon diaphragm, micro heater, and sensing layers. The micro heater is embedded in the sensing layer in order to increase the temperature to an operating temperature. The $SnO_2$-CuO multi layer film is prepared by the alternating deposition method and thermal oxidation which uses an electron beam evaporator and a thermal furnace. To determine the effect of the number of layers, five sets of films are prepared, each with different number of layers. The sensitivities are measured by applying $H_2S$ gas. It has a concentration of 1 ppm at an operating temperature of $270^{\circ}C$. At the same total thickness, the sensitivity of the sensor with multi sensing layers was improved, compared to the sensor with one sensing layer. The sensitivity of the sensor with five layers to 1 ppm of $H_2S$ gas is approximately 68%. This is approximately 12% more than that of a sensor with one-layer.

The Effect of $H_2O/H_2S$ Concentration in the Coal Gas on the Desulfurization Performance of Zn-Based Sorbents in a Fluidized-Bed Reactor (석탄가스에 함유된 $H_2O/H_2S$ 농도가 유동층반응기에서 아연계 건식탈황제의 성능에 미치는 영향)

  • Park, Young-Cheol;Jo, ung-Ho;Jin, Gyoung-Tae;Lee, Seung-Yong;Yi, Chang-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.871-872
    • /
    • 2009
  • 본 연구에서는 석탄가스에 함유된 $H_2O/H_2S$ 농도변화에 따른 세가지 종류의 아연계 탈황제의 반응성능을 회분식 유동층반응기에서 분석하였다. 가스화에서 생성되는 가스의 조성은 모사가스를 이용하여 입구의 $H_2O$$H_2S$ 농도를 변화시켜 실험을 수행하였다. $H_2O$의 농도는 5%부터 30%까지 $H_2S$의 농도는 0.5%에서 2%로 변화시켜 탈황성능을 분석하였다. 실험 결과 $H_2O$의 농도가 증가할수록 탈황성능이 감소하였다. 입구의 $H_2S$ 농도가 증가할수록 탈황반응기 후단의 $H_2S$ 농도 역시 증가하였으나, 탈황성능은 최저 99.5%로 건식탈황제를 이용하여 99% 이상의 $H_2S$ 제거 성능을 보이는 것을 확인하였다.

  • PDF

Fabrication of High-Performance Colorimetric Fiber-Type Sensors for Hydrogen Sulfide Detection (황화수소 가스 감지를 위한 고성능 변색성 섬유형 센서의 제작 및 개발)

  • Jeong, Dong Hyuk;Maeng, Bohee;Lee, Junyeop;Cho, Sung Been;An, Hee Kyung;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.168-174
    • /
    • 2022
  • Hydrogen sulfide(H2S) gas is a high-risk gas that can cause suffocation or death in severe cases, depending on the concentration of exposure. Various studies to detect this gas are still in progress. In this study, we demonstrate a colorimetric sensor that can detect H2S gas using its direct color change. The proposed nanofiber sensor containing a dye material named Lead(II) acetate, which changes its color according to H2S gas reaction, is fabricated by electrospinning. The performance of this sensor is evaluated by measuring RGB changes, ΔE value, and gas selectivity. It has a ΔE value of 5.75 × 10-3 ΔE/s·ppm, showing improved sensitivity up to 1.4 times that of the existing H2S color change detection sensor, which is a result of the large surface area of the nanofibers. The selectivity for H2S gas is confirmed to be an excellent value of almost 70 %.

The Analysis of LFG Composition with Respect to Malodorous Sulfur Compounds (환원황 화합물을 중심으로 한 매립가스의 조성에 대한 연구)

  • 김기현;오상인;최여진;전의찬;사재환;선우영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.77-85
    • /
    • 2004
  • In this study, the concentrations of reduced S compounds (including hydrogen sulfide (H$_2$S); methyl mercaptan ($CH_3$SH); dimethyl sulfide (($CH_3$)$_2$S); carbon disulfide (CS$_2$); and dimethyl disulfide (($CH_3$)$_2$S$_2$) were determined from landfill gas (LFG) in three municipal landfill sites in the two cities of Gwang Ju (GJ) and Jeju (JJ), Korea. The S gas concentrations measured in these landfill sites were found to be dominated by H$_2$S with its mean concentration of 850 ppm from 10 LFG samples. Both absolute and relative dominance of H$_2$S was seen to be significant in most LFG samples, except those collected from very old and inactive landfills. Unlike the pattern of H$_2$S, other S gases were typically observed at much reduced concentration levels (a few ppm or less) as follows: DMS (3.5); $CH_3$SH (1.3); CS$_2$(1.2); and DMDS (0.02 ppm). If compared equally in mass concentration unit (mg m$^{-3}$ ), H$_2$S generally explained far above 90% of all S gas masses determined concurrently. Moreover, as its mass concentration commonly exceeds those of the major aromatic VOC components in LFG (like benzene and toluene), it appeared to be one of the most dominant gaseous components emitted as LFG in a quantitative sense.

Selective chemical vapor deposition of $\beta$-SiC on Si substrate using hexamethyldisilane/HCl/$H_{2}$ gas system (Hexamethyldisilane/HCl/$H_{2}$ gas system을 이용한 Si 기판에서 $\beta$-SiC의 선택적 화학기상증착)

  • 양원재;김성진;정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.14-19
    • /
    • 1999
  • Using a single precursor of hexamethyldisilane $(Si_{2}(CH_{3})_{6})$, $\beta$-SiC film was successfully deposited on a Si substrate at $1100^{\circ}C$ by a chemical vapor deposition method. Selectivity of SiC deposition on a Si substrate partially covered with a masking material was investigated by introducing HCl gas into hexamethyldisilane/$H_{2}$ gas system during the deposition. The schedule of the precursor and HCl gas flows was modified so that the selectivity of SiC deposition between a Si substrate and a mask material should be improved. It was confirmed that the selectivity of SiC deposition was improved by introducing HCl gas. Also, the pulse gas flow technique was effective to enhance the selectivity.

  • PDF