• Title/Summary/Keyword: $H_2S$ corrosion

Search Result 309, Processing Time 0.026 seconds

Corrosion Behaviors of Structural Materialsin High Temperature S-CO2 Environments

  • Lee, Ho Jung;Kim, Hyunmyung;Jang, Changheui
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • The isothermal corrosion tests of several types of stainless steels, Ni-based alloys, and ferritic-martensitic steels (FMS) were carried out at the temperature of 550 and $650^{\circ}C$ in SFR S-$CO_2$ environment (200 bar) for 1000 h. The weight gain was greater in the order of FMSs, stainless steels, and Ni-based alloys. For the FMSs (Fe-based with low Cr content), a thick outer Fe oxide, a middle (Fe,Cr)-rich oxide, and an inner (Cr,Fe)-rich oxide were formed. They showed significant weight gains at both 550 and $650^{\circ}C$. In the case of austenitic stainless steels (Fe-based) such as SS 316H and 316LN (18 wt.% Cr), the corrosion resistance was dependent on test temperatures except SS 310S (25 wt.% Cr). After corrosion test at $650^{\circ}C$, a large increase in weight gain was observed with the formation of outer thick Fe oxide and inner (Cr,Fe)-rich oxide. However, at $550^{\circ}C$, a thin Cr-rich oxide was mainly developed along with partially distributed small and nodular shaped Fe oxides. Meanwhile, for the Ni-based alloys (16-28 wt.% Cr), a very thin Cr-rich oxide was developed at both test temperatures. The superior corrosion resistance of high Cr or Ni-based alloys in the high temperature S-$CO_2$ environment was attributed to the formation of thin Cr-rich oxide on the surface of the materials.

Atmospheric Corrosion Behavior of Weathering Steel Exposed to the Outdoors for 10 Years in Korea

  • Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.258-272
    • /
    • 2022
  • Steel structures exposed to the outdoors experienced several types of corrosion, which may reduce their thickness. Since atmospheric corrosion can induce economic losses, it is important to consider the atmospheric corrosion behavior of a variety of metals and alloys. This work performed outdoor exposure tests for 10 years at 14 areas in Korea and calculated the atmospheric corrosion rate of weathering steel. This paper discussed the atmospheric corrosion behavior of weathering steel based on various corrosion factors. The average corrosion rates in coastal, industrial, urban, and rural areas were found to range from (2.83 to 4.23) ㎛/y, (2.99 to 4.23) ㎛/y, (1.72 to 3.14) ㎛/y, and (1.57 to 2.85) ㎛/y respectively. It should be noted that the maximum corrosion rate was about 6.0 times greater than the average corrosion rate. Regardless of the exposure sites, the color differences were increased, but the glossiness was reduced and there was no relationship between the corrosion rate and environmental factors and the glossiness.

Effect of Seawater Concentration on Electrochemical Corrosion of Duplex Stainless Steel

  • Ho-Seong Heo;Hyun-Kyu Hwang;Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.255-265
    • /
    • 2024
  • Duplex stainless steels (UNS S32205, UNS S32750) are used in various environments. The potentiodynamic polarization tests were conducted at 30 ℃ in order to study the electrochemical corrosion behaviors of duplex stainless steels under different seawater concentrations (fresh water, seawater, mixed water). The results of Tafel analysis in seawater showed that UNS S32205 and UNS S32750 had the highest corrosion current densities at 6.12 × 10-4 mA/cm2 and 5.41 × 10-4 mA/cm2, respectively. The pitting potentials of UNS S32205 and UNS S32750 were comparable to or higher than the oxygen evolution potential in fresh water, mixed water, and seawater. The maximum damage depths and surface damage ratio caused by pitting corrosion increased with chloride concentration. The synergy effect of molybdenum and nitrogen enhances the concentration of Mo, Ni, and Cr at the interface of the metal-electrolyte. In particular, in the case of nitrogen, NH3 and NH4+ are formed to compensate for the pH drop in the pitting region, thereby strengthening the repassivation of the film. The excellent corrosion resistance of UNS S32750 is attributed to the strengthening effect of the chromium oxide film due to the presence of molybdenum and nitrogen.

Relationship Between the Initiation and Propagation of SCC and the Electrochemical Noise of Alloy 600 for the Steam Generator Tubing of Nuclear Power Plants

  • Kim, Y.S.;Nam, H.S.;Kwon, Y.H.;Kim, S.W.;Kim, H.P.;Chang, H.Y.
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.57-66
    • /
    • 2010
  • Since nuclear power plants are being operated under high temperature and high pressure, on-line monitoring technique to detect corrosion could be more effective than off-line method in shut-off period. In this operating condition, electrochemical noise method may be suitable to monitor the corrosion. This paper aims the analysis on the relation between the cracking and electrochemical noise signal of Alloy 600 under U-bending. When electrochemical noise monitoring technique was used during SCC test, it was judge to be obvious that if cracks generate, its generation can be detected by electrochemical current noise. Cracking-related noise was defined as the noise showing 5~10 times greater than the average value of background noise bands. On the base of crack noise, crack initiation time was determined. From SCC test and electrochemical noise monitoring in $25^{\circ}C$, 0.1 M $Na_2S_4O_6$ solution (Reverse U-Bended Alloy 600 SE+), average crack initiation time was obtained as 9,046 seconds and from its initiation time, it could be defined that net crack propagation rate is the crack length divided by ${\Delta}T$(= total test period - crack initiation time). Therefore, average net crack propagation rate was obtained to be $1.18{\times}10^{-9}\;m/s$.

EVALUATION OF PH CONTROL AGENTS INFLUENCING ON CORROSION OF CARBON STEEL IN SECONDARY WATER CHEMISTRY CONDITION OF PRESSURIZED WATER REACTOR

  • Rhee, In Hyoung;Jung, Hyunjun;Cho, Daechul
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.431-438
    • /
    • 2014
  • The effect of various pH agents on the corrosion behavior of carbon steel was investigated under a simulated secondary water chemistry condition of a pressurized water reactor (PWR) in a laboratory, and the steel's corrosion performance was compared with the field data obtained from Uljin NPP unit 2 reactor. All tests were carried out at temperatures of $50^{\circ}C-250^{\circ}C$and pH of 8.5 - 10. The pH at a given temperature was controlled by adding different agents. Laboratory data indicate that the corrosion rate of carbon steel decreased as the pH increased under the test conditions and the highest corrosion rate was measured at $150^{\circ}C$. This high corrosion rate may be related to high dissolution and instability of Fe oxide ($Fe_3O_4$) at $150^{\circ}C$. It was also found that an addition of ethanolamine (ETA) to ammonia was more effectivefor anticorrosion than ammonia alone, and that mixed treatment reduced 50% of iron or more at pHs of 9.5 or higher, especially in the steam generator (SG) and the moisture separator & re-heater (MSR).

Effect of Heat Treatment on Corrosion Resistance of Zn-Mg-Al Alloy Coated Steel

  • Il Ryoung Sohn;Tae Chul Kim;Sung Ju Kim;Myung Soo Kim;Jong Sang Kim;Woo Jin Lim;Seong Mo Bae;Su Hee Shin;Doo Jin Paik
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.283-288
    • /
    • 2024
  • Hot-dip Zn-Mg-Al coatings have a complex microstructure consisting of Zn, Al, and MgZn2 phases. Its crystal structure depends on alloy content and cooling rates. Microstructure and corrosion resistance of these coatings might be affected by heat treatment. To investigate effect of heat treatment on microstructure and corrosion resistance of Zn-Mg-Al coatings, Zn-1.5%Mg-1.5%Al coated steel was heated up to 550 ℃ at a heating rate of 80 ℃/s and cooled down to room temperature. At above 500 ℃, the ternary phase of Zn-MgZn2-Al was melted down. Only Zn and MgZn2 phases remained in the coating. Heat- and non-heat-treated specimens showed similar corrosion resistance in Salt Spray Test (SST). When a Zn-3.0%Mg-2.5%Al coated steel was subjected to heat treatment at 100 ℃ or 300 ℃ for 200 h and compared with GA and GI coated steels, the microstructure of coatings was not significantly changed at 100 ℃. However, at 300 ℃, most Al in the coating reacted with Fe in the substrate, forming a Fe-Al compound layer in the lower part of the coating. MgZn2 was preferentially formed in the upper part of the coating. As a result of SST, Zn-Mg-Al coated steels showed excellent corrosion resistance, better than GA and GI.

Stress Corrosion Cracking Initiation Behavior of Weldable Structural Steel in $H_2S$ Gas Saturated HCl Solution ($H_2S$ 가스포화 염산수용액에 의한 용접구조용강의 응력부식균열 발생거동)

  • 오세욱;김재철;김광영
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.88-100
    • /
    • 1990
  • Among the test methods to evaluate stress-corrosion cracking(SCC) on the basis of fracture mechanics, constant displacement(bolt) loading method using modified-WOL specimen is practically convenient. In this test method, compliance formula is generally required to calculate load(consequently $K_{ISCC}$). There are many problems in using the analytic compliance formula to calculate $K_{ISCC}$, so we had proposed the experimental $K_{ISCC}$ evaluation technique in the previous report. This study has employed the slightly altered configuration of modified-WOL specimen made of weldable structural stee(BS360-50D). With these specimens, stress-corrosion tests have been performed in $H_2S$ gas saturated 20% HCl solution. Through the test, the problems as mentioned earlier have been discussed again, and the proposed evaluation technique has been verified. And the stress-corrosion cracks and hydrogen blisters have been investigated in the initiation step with the aids of metallurgical micrographs, SEM fractographs, and EPMA analysis. The inclusions segregated in the mid-thickness region traps hydrogen to produce the hydrogen blistering. The applied or residual stress does not contribute the occurrence of the blister. Hydrogen absorbed into the mid-thickness region is consumed to produce the blistering so that stress-corrosion crack could hardly be detected at that region. The stress-corrosion cracks initiate from the inclusions and propagate in radial pattern. And the initiation site is remote from the crack tip and is inclined from the crack plane, which is assumed to be caused by the triaxial stress and the amount of the absorbed hydrogen.

  • PDF

Corrosion Cost and Corrosion Map of Korea - Based on the Data from 2005 to 2010

  • Kim, Y.S.;Lim, H.K.;Kim, J.J.;Hwang, W.S.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.52-59
    • /
    • 2011
  • Corrosion of metallic materials occurs by the reaction with corrosive environment such as atmosphere, marine, soil, urban, high temperature etc. In general, reduction of thickness and cracking and degradation are resulted from corrosion. Corrosion in all industrial facilities and infrastructure causes large economic losses as well as a large number of accidents. Economic loss by corrosion has been reported to be nearly 1-6% of GNP or GDP. In order to reduce corrosion damage of industrial facilities, corrosion map as well as a systematic investigation of the loss of corrosion in each industrial sector is needed. The Corrosion Science Society of Korea in collaboration with 15 universities and institutes has started to survey on the cost of corrosion and corrosion map of Korea since 2005. This work presents the results of the survey on cost of corrosion by Uhlig, Hoar, and input-output methods, and the evaluation of atmospheric corrosion rate of carbon steel, weathering steel, galvanized steel, copper, and aluminum in Korea. The total corrosion cost was estimated in terms of the percentage of the GDP of industry sectors and the total GDP of Korea. According to the result of Input/output method, corrosion cost of Korea was calculated as 2.9% to GDP (2005). Time of wetness was shown to be categories 3 to 4 in all exposure areas. A definite seasonal difference was observed in Korea. In summer and fall, time of wetness was higher than in other seasons. Because of short exposure period (12 months), significant corrosion trends depending upon materials and exposure corrosion environments were not revealed even though increased mass loss and decreased corrosion rate by exposure time.

The sulfide stress corrosion cracking characteristics of multi-pass welded A106 Gr B steep pipe (A106 Gr B강 다층용접부의 황화물 응력부식균열 특성)

  • Lee, Gyu-Young;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.20-25
    • /
    • 2008
  • Sulfide stress corrosion cracking (SSCC) of materials exposed to oilfield environment containing hydrogen sulfide ($H_2S$) has been recognized as a materials failure problem. Laboratory data and field experience have demonstrated that extremely low concentration of $H_2S$ may be sufficient to lead to SSC failure of susceptible materials. In some cases, $H_2S$ can act synergistically with chlorides to produce corrosion and cracking failures. SSC is a form of hydrogen embrittlement that occurs in high strength steels and in localized hard zones in weldment of susceptible materials. In the heat-affected zones adjacent to welds, there are often very narrow hard zones combined with regions of high residual stress that may become embrittled to such an extent by dissolved atomic hydrogen. On the base of understanding on sulfide stress cracking and its mechanism, SSC resistance for the several materials, those are ASTM A106 Gr B using in the oil industries, are evaluated.

  • PDF

Characterization and Corrosion Behaviour of Zn-Sn Binary Alloy Coatings in 0.5 M H2SO4 Solution

  • Fatoba, O.S.;Popoola, A.P.I.;Fedotova, T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2015
  • This work examines the characterization and corrosion behaviour of laser alloyed UNSG10150 steel with three different premixed composition Zn-Sn binary powders using a 4.4 kW continuous wave (CW) Rofin Sinar Nd:YAG laser processing system. The steel alloyed samples were cut to corrosion coupons, immersed in sulphuric acid (0.5 M H2SO4) solution at 30℃ using electrochemical technique and investigated for its corrosion behaviour. The morphologies and microstructures of the developed coated and uncoated samples were characterized by Optic Nikon Optical microscope (OPM) and scanning electron microscope (SEM/EDS). Moreover, X-ray diffractometer (XRD) was used to identify the phases present. An enhancement of 2.7-times the hardness of the steel substrate was achieved in sample A1 which may be attributed to the fine microstructure, dislocations and the high degree of saturation of solid solution brought by the high scanning speed. At scanning speed of 0.8 m/min, sample A1 exhibited the highest polarization resistance Rp (1081678 Ωcm2 ), lowest corrosion current density icorr (4.81×10−8A/cm2 ), and lowest corrosion rate Cr (0.0005 mm/year) in 0.5 M H2SO4. The polarization resistance Rp (1081678 Ωcm2 ) is 67,813-times the polarization of the UNSG10150 substrate and 99.9972% reduction in the corrosion rate.