• 제목/요약/키워드: $H_2S$ corrosion

검색결과 309건 처리시간 0.023초

가압경수로 원전 물-증기 순환영역에서 암모니아와 MPA의 완충세기 (Buffer Intensity of Ammonia and MPA in Water-Steam Cycle of PWRs)

  • 이인형;안현경
    • 한국산학기술학회논문지
    • /
    • 제11권7호
    • /
    • pp.2708-2712
    • /
    • 2010
  • 아민(암모니아 또는 MPA)은 가압경수로 원전 2차측 부식을 방지하는 최적 pH를 유지하기 위해 사용되고, 온도가 동일하게 유지되지 않는 물-증기 순환 영역에서 모든 아민은 평형상수에 따라 2차측에서 서로 다른 pH를 나타낸다. 부식제어에서 pH는 유일한 인자가 아니므로 두 번째 변수, 즉 불순물의 유입 또는 부식 반응으로 인해 $H^+$가 추가되거나 제거되었을 때 안정된 pH를 지속하는 능력인 완충세기의 고려가 필요하다. 온도를 고려한 완충세기는 2차측 최적 pH 제어제 선정과 유체가속부식의 특징을 기본적으로 이해할 수 있도록 한다. PWRs의 전체 운전범위에서 암모니아와 MPA의 완충세기를 조사하였다. 낮은 온도$(25{\sim}100^{\circ}C)$에서는 암모니아 그리고 높은 온도$(150{\sim}250^{\circ}C)$에서는 MPA가 부식 억제를 위한 충분한 완충세기를 나타내었다. 완충세기 측면에서, i) 최적 pH 제어제 pH 범위는 pH(T)- $1{\leq}pK_a(T){\leq}pH(T)$+0.5, ii) 아민 용액은 부식 억제를 위해 충분한 완충세기$({\beta})$를 가져야하고, iii) 최대 유체가속부식은 ${\beta}_B/{\beta}$ 비율이 최저인 온도에서 최대를 나타낸다.

The Inhibition of C-steel Corrosion in H3PO4 Solution by Some Furfural Hydrazone Derivatives

  • Fouda, A.S.;Badr, G.E.;El-Haddad, M.N.
    • 대한화학회지
    • /
    • 제52권2호
    • /
    • pp.124-132
    • /
    • 2008
  • H3SO4(M: 몰농도) 용액에서 탄소강의 부식방지제로 Furfural hydrazone 유도체의 효과를 질량손실법 및 정전류극성법을 사용해 연구하였다. 이들 유도체 존재하에서 탄소강의 부식속도가 급격히 감소함을 관찰하였다. 이 연구로부터 부식방지효율은 부식방지제 농도가 증가함에 따라 증가하였고 I와 SCN을 첨가하면 부식방지효율은 더욱 증가되었다. 질량손실법을 사용해 5×10-6 M의 유도체가 있을 때와 없을 때 30-60oC 사이에서 탄소강 부식에 미치는 온도 효과를 보았다. 부식과정에 대한 활성화에너지(Ea*)와 다른 열역학적 변수들을 계산하였고 이들에 대해 논의하였다. 정전류극성법을 통해 유도체들이 혼합형 방지제로 작용함을 알았고 외부전류를 흘려주었을 때 음극은 더욱 분극되었다. 3M H3SO4 용액에서 탄소강 표면에 이들 유도체들의 흡착은 Frumkin의 흡착등온을 따랐다. 이들 유도체들의 화학구조를 통해 부식방지 메커니즘을 설명하였다.

환경유해물질 저감을 위한 Acryl emulsion의 방청필름 응용 연구 (A Study on the Application to Anti-corrosive Film of Acryl Emulsion for the Reducing of Environmental Pollutants)

  • 이순홍
    • Corrosion Science and Technology
    • /
    • 제8권5호
    • /
    • pp.197-202
    • /
    • 2009
  • The high toxicity of wax, oil, varnish and volatile corrosion inhibitor(VCI) corrosion inhibitors lead to an increasing interest in using non-toxic alternatives such as anti-corrosive film. This study aims to investigate the possibility to use acryl based anti-corrosive film as a substitution of toxic corrosion inhibitors. Acryl emulsions were polymerized by several acryl monomers(acrylonitrile(AN), n-butyl acrylate(nBA), methylmethacrylate(MMA) and glycycyl methacrylate(GMA)), non-toxic corrosion inhibitor, crosslinking agents(diethylene glycol dimethacrylate(DEGDA)) and various additives in order to apply substrate of anti-corrosive film. Acryl emulsion for anti-corrosive film(AeACF) as a substrate of corrosion inhibitor film has excellent removal characteristic at above $25^{\circ}C$. The crosslinked by DEGDA in a range of above 4 wt% content anti-corrosive film can easily remove from the metal surface by using hands because it kept a balance of cohesion and adhesion strength. Anti - corrosive performance of AeACF is better than anti-corrosive oil by corrosion rate test, which was measured $54.3mg/dm^2$ day(MDD) and $142.9mg/dm^2$ day, respectively. Anti-corrosive film consisting of acryl monomers and inorganic anti-corrosive ingredients did not emit any toxic pollutants by gas chromatography. Thus it is estimated that acryl based anti-corrosion film can substitute toxic corrosion inhibitors.

Use of Capparis decidua Extract as a Green Inhibitor for Pure Aluminum Corrosion in Acidic Media

  • Al-Bataineh, Nezar;Al-Qudah, Mahmoud A.;Abu-Orabi, Sultan;Bataineh, Tareq;Hamaideh, Rasha S.;Al-Momani, Idrees F.;Hijazi, Ahmed K.
    • Corrosion Science and Technology
    • /
    • 제21권1호
    • /
    • pp.9-20
    • /
    • 2022
  • The aim of this paper is to study corrosion inhibition of Aluminum with Capparis decidua extract. The study was performed in a 1.0 M solution of hydrochloric acid (HCl) and was monitored both by measuring mass loss and by using electrochemical and polarization methods. A scanning electron microscopy (SEM) technique was also applied for surface morphology analysis. The results revealed high inhibition efficiency of Capparis decidua extract. Our data also determined that efficiency is governed by temperature and concentration of extract. Optimum (88.2%) inhibitor efficiency was found with maximum extract concentration at 45 o C. The results also showed a slight diminution of aluminum dissolution when the temperature is low. Based on the Langmuir adsorption model, Capparis decidua adsorption on the aluminum surface shows a high regression coefficient value. From the results, the activation enthalpy (∆H#) and activation entropy (∆S#) were estimated and discussed. In conclusion, the study clearly shows that Capparis decidua extract acted against aluminum corrosion in acidic media by forming a protective film on top of the aluminum surface.

해수배관 내부 에폭시 코팅재의 캐비테이션 및 침지 열화에 따른 압입인장특성 (Indentation Tensile Properties of Seawater Piping with Cavitation and Immersion Degradation)

  • 정민재;김수현;전종모;김영식;김영천
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.419-428
    • /
    • 2023
  • Seawater has been used to cool devices in nuclear power plants. However, the pipes used to transport seawater are vulnerable to corrosion; hence, the inner side of pipelines is coated with an epoxy layer as prevention. Upon coating damage, the pipe becomes exposed, and corrosion progresses. The major cause is widely known as cavitation corrosion, causing the degradation of mechanical properties. In this study, corroded specimens were prepared using cavitation and immersion methods to clarify the degradation trend of mechanical properties with corrosion. Three different types of epoxy coatings were used, and accelerated cavitation procedures were composed of amplitudes of 15 ㎛, 50 ㎛, and 85 ㎛ for 2 h, 4 h, and 6 h. The immersion periods were 3 and 6 weeks. We conducted instrumented indentation tests on all degradation samples to measure mechanical properties. The results showed that higher cavitation amplitudes and longer cavitation or immersion times led to more degradation in the samples, which, in turn, decreased the yield strength. Of the three samples, the C coating had the highest resistance to cavitation and immersion degradation.

CP-Ti 및 Ti-6Al-4V 합금의 전기화학적 특성에 미치는 제조공정의 영향 (Effect of Manufacturing Process on Electrochemical Properties of CP-Ti and Ti-6Al-4V Alloys)

  • 김기태;조현우;장현영;김영식
    • Corrosion Science and Technology
    • /
    • 제17권1호
    • /
    • pp.20-29
    • /
    • 2018
  • Ti and its alloys show the excellent corrosion resistance to chloride environments, but they show less corrosion resistance in HCl, $H_2SO_4$, NaOH, $H_3PO_4$, and especially HF environments at high temperature and concentration. In this study, we used the commercially pure titanium and Ti-6Al-4V alloy, and evaluated the effect of the manufacturing process on the electrochemical properties. We used commercial products of rolled and forged materials, and made additive manufactured materials by DMT (Directed Metal Tooling) method. We annealed each specimen at $760^{\circ}C$ for one hour and then air cooled. We performed anodic polarization test, AC impedance measurement, and Mott-Schottky plot to evaluate the electrochemical properties. Despite of the difference of its microstructure of CP-Ti and Ti-6Al-4V alloys by the manufacturing process, the anodic polarization behavior was similar in 20% sulfuric acid. However, the addition of 0.1% hydrofluoric acid degraded the electrochemical properties. Among three kinds of the manufacturing process, the electrochemical properties of additive manufactured CP-Ti, and Ti-6Al-4V alloys were the lowest. It is noted that the test materials showed a Warburg impedance in HF acid environments.

Study on New Candidate Coating Materials to Challenge Rudder Cavitation Damage

  • Lee, H.I.;Han, M.S.;Baek, K.K.;Lee, C.H.;Shin, C.S.;Chung, M.K.
    • Corrosion Science and Technology
    • /
    • 제7권5호
    • /
    • pp.274-282
    • /
    • 2008
  • Ships' hull is typically protected by a combination of protective coating system and electrical cathodic protection system, which has been an economical and effective measure for ship's hull to date. However, ships' rudder and adjacent hull areas are known to be subjected to premature corrosion damages, which require more frequent coating repair than other hull areas. Conventional organic coating system for ship's hull has been known only to remain intact just for 2~3 months on the rudder and adjacent area, especially for the fast-going ships such as container carriers or naval vessels. In this study, special organic/inorganic coating materials, which are commercially available, were tested in terms of cavitation resistance as an alternative to existing rudder & hull protection system. Both standard ultrasonic tester and in-house developed ultra water jet test method were employed as a means to evaluate their performance against cavitation induced damages. Additionally, the overall cost evaluation and workability at actual shipyard were discussed.

증기발생기 전열관 틈새복합환경(Pb+S+Cl)에서 Alloy 690의 응력부식균열거동 (Stress Corrosion Cracking Behavior of Alloy 690 in Crevice Environment (Pb + S + Cl) in a Steam Generator Tube)

  • 신정호;임상엽;김동진
    • Corrosion Science and Technology
    • /
    • 제17권3호
    • /
    • pp.116-122
    • /
    • 2018
  • The secondary coolant of a nuclear power plant has small amounts of various impurities (S, Pb, and Cl, etc.) introduced during the initial construction, maintenance, and normal operation. While the concentration of impurities in the feed water is very low, the flow of the cooling water is restricted, so impurities can accumulate on the Top of Tubesheet (TTS). This environment is chemically very complicated and has a very wide range of pH from acidic to alkaline. In this study, the characteristics of the oxide and the mechanism of stress corrosion cracking (SCC) are investigated for Alloy 690 TT in alkaline solution containing Pb, Cl, and S. Reverse U-bend (RUB) specimens were used to evaluate the SCC resistance. The test solution comprises 3m NaCl + 500ppm Pb + 0.31m $Na_2SO_4$ + 0.45m NaOH. Experimental results show that Alloy 690 TT of the crevice environment containing Pb, S, and Cl has significant cracks, indicating that Alloy 690 is vulnerable to stress corrosion cracking under this environment.

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion between CFRP and AA7075T6

  • Hur, S.Y.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제19권2호
    • /
    • pp.75-81
    • /
    • 2020
  • To reduce structural weight, light metals, including aluminum and magnesium alloys, have been widely used in various industries such as aircraft, transportation and automobiles. Recently, composite materials such as Carbon Fiber Reinforced Plastics (CFRP) and Graphite Epoxy Composite Material (GECM) have also been applied. However, aluminum and its alloys suffer corrosion from various factors, which include aggressive ions, pH, solution temperature and galvanic contact by potential difference. Moreover, carbon fiber in CFRP and GECM is a very efficient cathode, and very noble in the galvanic series. Galvanic contact between carbon fiber composites and metals in electrolytes such as rain or seawater, is highly undesirable. Notwithstanding the potentially dangerous effects of chloride and temperature, there is little research on galvanic corrosion according to chloride concentration and temperature. This work focused on the effects of chloride concentration and solution temperature on AA7075T6. The increased galvanic corrosion between CRFP and AA7075T6 was evaluated by electrochemical experiments, and these effects were elucidated.

염화물 수용액에서 자작나무 수액을 이용한 철강의 부식 억제 (Corrosion Inhibition of Steel by Addition of Birch Sap in Chloride Solution)

  • 박태준;김기애;이지이;장희진
    • Corrosion Science and Technology
    • /
    • 제17권5호
    • /
    • pp.225-230
    • /
    • 2018
  • The effects of birch sap, a possible natural corrosion inhibitor, on the corrosion behavior of steel in chloride solution were investigated. The corrosion rate was significantly reduced by the addition of 1~5 mL of birch sap to 500 mL of 3wt% NaCl or 3wt% $CaCl_2$ solution. A remarkable increase in the pitting potential in NaCl solution was observed by the addition of birch sap although it was almost constant in $CaCl_2$ solution. The corrosion rate of steel in both NaCl and $CaCl_2$ birch sap solution without addition of water was higher compared to that of aqueous solution without birch sap as the pH of the birch sap was 4.0. The presence of organic compounds like, fructose, galactose, glucose, and palmitic acid in the birch sap are thought to be adsorbed effectively on the metal surface, which provided corrosion protection. However, the inorganic elements including Na, Ca, K, Mg, Mn, S, etc. present in the birch sap exhibited no role in corrosion inhibition.