• 제목/요약/키워드: $H_2S$ Inlet Concentration

검색결과 56건 처리시간 0.023초

Simultaneous Removal of Hydrogen Sulfide and Ammonia Using Thiobacillus sp. IW in a Three-Phase Fluidized-Bed Bioreactor

  • Kum, Sung-Hoon;Oh, Kwang-Joong;Moon, Jong-Hae;Kim, Dong-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권3호
    • /
    • pp.419-422
    • /
    • 2000
  • A three-phase fluidized-bed bioreactor including Thiobacillus sp. IW was tested to remove H_2S and $NH_3$ simultaneously. The inlet $H_2S$ was oxidized to $SO_4^{2-}$ by Thiobacillus sp. IW, and the $NH_3$ reacted with the $SO_4^{2-}$ to form $(NH_4)_2SO_4$. The removal efficiency of $H_2S$ was 98.4-99.9% for an inlet concentration of 36-730 ppm and that of $NH_3$ was 60.2-99.2% for an inlet concentration of 45-412 ppm. The removal efficiency of $NH_3$ was reduced when the inlet loading rate of $NH_3$ was increased above 10 mg/l/h. When the bioreactor was operated for 25 days with a lower inlet concentration of $NH_3$ compared with the of $H_2S$, the bioreactor exhibited an excellent performance with a stable pH, dissolved oxygen content, and cell concentration.

  • PDF

Biomedia를 충전한 Biofilter에서 H2S와 NH3 혼합악취의 제거 (Removal of Mixed Gases of H2S and NH3 by the Biofilter Packed with Biomedia)

  • 임정수;조욱상;이은영
    • 청정기술
    • /
    • 제12권3호
    • /
    • pp.165-170
    • /
    • 2006
  • Polyurethane, PVA(polyvinyl alcohol)와 지렁이 분변토로 제작한 biomedia를 충진한 바이오필터(biofilter)를 이용하여 $H_2S$$NH_3$의 혼합 악취를 제거하였다. $NH_3$ 농도를 50 ppmv로 고정시킨 후, $H_2S$의 농도는 1~489 ppmv까지 증가시키며 제거효율을 살펴보았다. 또한 $NH_3$의 농도를 점진적으로 증가시켜 80, 100, 200, 300, 400, 500 ppmv 으로 설정하여 각각의 $NH_3$농도가 고정된 조건에서는 $H_2S$를 점차적으로 농도를 증가시켜주며 $NH_3$$H_2S$ 가스의 제거효율을 알아보았다. 혼합 악취가 공급되는 조건에서 $NH_3$의 유입 부하량은 입구농도가 50~300 ppmv 까지는 부하량 $11.14g\;N{\cdot}m^{-3}{\cdot}h^{-1}$이 증가함에 따라 제거용량도 비례하여 증가하였다. 입구농도가 300 ppmv 이상으로 증가함에 따라 유입 부하량은 증가하는 반면, 제거효율과 제거용량은 감소되는 것을 볼 수 있었다. 복합악취가 공급되는 조건에서 $H_2S$ 최대 부하량은 $40.27g\;S{\cdot}m^{-3}{\cdot}h^{-1}$이하이며, $NH_3$ 부하량이 $15.25g\;N{\cdot}m^{-3}{\cdot}h^{-1}$ 이하인 조건에서는 $NH_3$의 공급에 의해 $H_2S$의 제거효율은 큰 영향을 받지 않는 것으로 나타났다.

  • PDF

회분식 유동층반응기에서 세 종류 아연계 탈황제의 석탄가스 환원도, 수분함량, 황화수소함량에 따른 반응성 평가 (Analysis of Reactivity of Zn-Based Desulfurization Sorbents for Reducing Power, Water Vapor Content and H2S Content of the Coal Gas in a Batch-Type Fluidized-Bed Reactor)

  • 박영철;조성호;손재익;이창근
    • Korean Chemical Engineering Research
    • /
    • 제47권6호
    • /
    • pp.710-714
    • /
    • 2009
  • 본 연구에서는 석탄가스의 환원도와 석탄가스에 함유된 $H_2O/H_2S$ 농도변화에 따른 세 가지 종류의 아연계 탈황제의 반응성능을 회분식 유동층반응기에서 분석하였다. 가스화에서 생성되는 가스의 조성은 환원도가 각각 다른 KRW(Kellogg-Rust-Westinghouse) 공기이용 가스 조성, Shell 산소이용 가스 조성, 고등기술연구원의 가스 조성을 기준으로 모사가스를 이용하여 입구의 $H_2O$$H_2S$ 농도를 변화시켜 실험을 수행하였다. $H_2O$의 농도는 5부터 30%까지 $H_2S$의 농도는 0.5에서 2%로 변화시켜 탈황성능을 분석하였다. 실험 결과 $H_2O$의 농도가 증가할수록 탈황성능이 감소하고 입구의 $H_2S$ 농도가 증가할수록 탈황반응기 후단의 $H_2S$ 농도 역시 증가하였다. 모든 조건에서 환원도에 따른 탈황성능 변화는 없었으며 탈황성능은 최저 99.5%로 건식탈황제를 이용하여 99% 이상의 $H_2S$ 제거 성능을 보이는 것을 확인하였다.

황산화 균주가 부착된 다공성 세라믹 biofilter를 이용한 $H_2S$ 제거 (Removal of Hydrogen Sulfide Using Porous Ceramic Biofilter Inoculated with Sulfur Oxidizing Bacteria)

  • 박상진;조경숙
    • 한국대기환경학회지
    • /
    • 제15권5호
    • /
    • pp.649-655
    • /
    • 1999
  • Biofiltration of polluted gas streams contained $H_2S$ was studied. The experiments were performed in a laboratory-scale reactor with a porous ceramic media inoculated with sulfur oxidizing bacterium, TAS which was isolated from activiated sludge. The concentration of $H_2S$ in the inlet gas varied from 109 to 3,841 ppm, at the various space velocities(SV) of 50 $h^{-1}$ to 250 $h^{-1}$. Various tests have been conducted to evaluate the effects of such parameters as pH, concentration of sulfate ion and retention time on the pressure drop and maximum elimination capacity. The removal efficiency of $H_2S$ decreased as the $H_2S$ concentration or gas velocity increased in the inlet gas. Pressure drop was insignificant in this system. The maximum elimination capacity could reach up to 16.35g-S/kg-dry packing material/day.

  • PDF

광촉매반응을 이용한 VOCs의 촉매산화 (Catalytic Oxidation of VOCs using Photocatalysis)

  • 이승범;이재동
    • 환경위생공학
    • /
    • 제18권2호
    • /
    • pp.52-59
    • /
    • 2003
  • This study was progressed in photocatalysis of VOCs using $UV/TiO_2$ which was a benign process environmentally. The experiments were peformed to know photodegradation characteristics as crystalline structure of $TiO_2$ which had anatase, rutile and P-25 (anatase : rutile = 70 : 30). The main purpose of this study was to identify photocatalytic characteristics as inlet concentration of reactants, $H_2O$, and residence time. The inlet concentration of VOCs was changed 50, 100 and 200 ppmv, and amount of $H_2O$ was changed 0, 500 and $1000{\;}mg/m^3$, respectively. The deep conversion was increased as the inlet concentration decreased, and the amount of $H_2O$ increased. The deep conversion of benzene had the highest value at $1000{\;}mg/m^3${\;}H_2O$ and 50 ppmv of inlet concentration. The reactivity of reactants was decreased in order benzene > toluene > m-xylene. Also, the photocatalytic deep conversion was increased as residence time increased, because the contact time between reactants and catalyst was increased. In this study, intermediates had not found by GC/MSD analysis. Therefore, the reactants were completely converted to $H_2O{\;}and{\;}CO_2$.

Thiobacillus ferrooxidans 생물막과 화학적 방법에 의한 항화수소 처리 공정 개발

  • 정승호;장영선;차진명;김태원;이광연;오민하;박돈희
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.423-426
    • /
    • 2002
  • A novel process for $H_2S$ gas treatment has been introduced, based on the combined action of a chemical absorption step and a biological step involving the biocatalytic activity of the bacterium Thiobacillus ferrooxidans. The aim of this study is the development of a process for $H_2S$ elimination from gas streams based on that chemical/biological method. The immobilized biomass reactor/chemical adsorption system is suitable for application of the removal of $H_2S$. A double stage reactor was used for the experimental work. The removal efficiencies of over 99% were observed in the range of inlet $H_2S$ concentration from 200 to 1,000ppm. The novel process showed the stable elimination efficiencies of over 95% under the retention time range from 20 to 40sec at the 1,000ppm of $H_2S$ inlet concentration.

  • PDF

활성탄/폴리우레탄 복합담체를 충전한 바이오필터에서 H2S의 제거특성 (Removal Characteristics of H2S in the Biofilter Packed with Activated Carbon/Polyurethane Composite Media)

  • 감상규;강경호;임진관;이민규
    • 한국환경과학회지
    • /
    • 제13권1호
    • /
    • pp.47-53
    • /
    • 2004
  • A biofiltration system using activated carbon/polyurethane composite as solid support inoculated with Bacillus sp. was developed for treating a gaseous stream containing high concentrations of H$_2$S. The effects of operating condition such as the influent H$_2$S concentration and the empty bed contact time (EBCT) on the removal efficiency of H$_2$S were investigated. The biofilter showed the stable removal efficiencies of over 99 % under the EBCT range from 15 to 60 sec at the 300 ppmv of H$_2$S inlet concentration. When the inlet concentration of H$_2$S was increased, the removal efficiencies decreased, reaching 95 and 74%, at EBCTs of 10 and 7.5 sec, respectively. The maximum elimination capacity in the biofilter packed with activated carbon/polyurethane composite media was 157 g/m$^3$/hr.

황화수소 제거를 위한 Biofilter에 관한 연구 (A Study on Biofilter for Hydrogen Sulfide Removal)

  • 빈정인;이병헌;김중균;권성현;김상규;이민규
    • 한국환경과학회지
    • /
    • 제10권4호
    • /
    • pp.287-292
    • /
    • 2001
  • A packed bed of volcanic rock was used as deodorizing material to remove hydrogen sulfide($H_2$S) from air in a laboratory-scale column, and was inoculated with Thiobacillus sp. as $H_2S$ oxidizer. The effects of volcanic rock particle size distribution on system pressure drop were examined. Various tests have been conducted to evaluate the effect of $H_2S$ inlet concentration and CBCT(Empty Bed Contact Time) on $H_2S$ elimination. The pressure drop for particles of size range from 5.6 to 10 mm was 14 mm$H_2S$/m at a representative gas velocity of 0.25m/s. Biofilter using scoria and Thiobacillus sp. could get the stable removal efficiencies more than 99.9% under $H_2S$ inlet concentrations in the range from 30 to 1,100ppm at a constant gas flow rate of $15.2{\ell}$/min. $H_2S$ removal efficiencies greater than 99% were observed as long as EBCT was longer than 8sec at the 250ppm of $H_2S$ inlet concentration. When EBCT was reduced to 5.5 sec, $H_2S$ removal efficiency decreased by about 12 percent. The maximum $H_2S$ elimination capacity was determined to be 269g-$H_2S/m^3{\cdot}hr$.

  • PDF

종속영양세균과 독립영양세균을 고정화한 Polyurethane Biofilter의 돈분뇨 악취제거 (Removal of Malodorous Gases from Swine Manure by a Polyurethane Biofilter Inoculated with Heterotrophic and Autotrophic Bacteria.)

  • 이연옥;조춘구;류희욱;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제30권1호
    • /
    • pp.91-97
    • /
    • 2002
  • Removal of malodorous gases from swine manure by a polyurethane biofilter inoculated with heterotrophic and autotrophic bacteria was investigated. Ammonia, hydrogen sulfide and other gases could be efficiently treated at 3~3.6 second of empty bed retention time by the polyurethane biofilter. In the range of SV $200~l,200h^{-1}$ , the average removal efficiency of odor was about 89% when the odor unit of inlet gas was below 4100. Odor elimination capacity of the polyurethane biofilter was$ 1.8$\times$10^{5}$ $~5.0$\times$10^{7}$OUㆍm$^{-3}$$h^{-1}$ that were 84~90% of the inlet load. The critical loads of $NH_3$ and $H_2$S, which mean 97% removal with respect to the inlet loads, were 31 and $27 g.m^{-3}$$h^{-1}$ , respectively. The maximum elimination capacities of $NH_3$ and $H_2$S were 56 and $157 gㆍm^{-3}$ ㆍh$^{-1}$ , respectively. Although the removability for$ NH_3$ and $H_2$S was not influenced by $H_2$S$NH_3$ ratio (ppmv/ppmv), the $H_2$S removability was inhibited by high $H_2$S concentration more than 80 ppmv.

디젤 입자상물질 후처리 장치에서 입자상물질의 연소에 미치는 재생 인자의 영향 (Effects of Regeneration Parameters on Oxidation of Particulate in a Diesel Particulate Trap System)

  • 김재업;조훈;김형욱;박동선;유천;김응서
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.168-177
    • /
    • 1998
  • The effects of the regeneration parameters such as inlet gas temperature, space velocity, oxygen concentration of the exhaust gas, and initial particulate loading on the oxidation of the particulate inside ceramic cordierite filter have been investigated through an engine experiment. As the inlet gas temperature increases, the remarkable filter temperature occurs owing to the rapid combustion rate. Though the higher space velocity affirms the safe regeneration, it also requires much fuel consumption of the burner. For that reason, the space velocity should be compromised considering the fuel economy. The excessive accumulation of the particulate may cause undesirable regeneration temperatures inside filer even under the optimized regeneration condition. The inlet gas temperature should be selected to overcome the variation of the oxygen concentration which is inherent feature of the diesel engine. It is the most important factor in the regeneration control techniques.

  • PDF