• 제목/요약/키워드: $H_2O_2-induced$ neuronal death

검색결과 56건 처리시간 0.023초

가감보양환오탕(加減補陽還五湯)의 N2a 뇌신경세포에 대한 보호효과 (Neuroprotective effects of modified Bo-Yang-Hwan-Oh-Tang in N2a neuroblastoma cells)

  • 임규;박용기
    • 대한본초학회지
    • /
    • 제21권4호
    • /
    • pp.77-84
    • /
    • 2006
  • Objectives : To evaluate the neuroprotective effects of modified Bo-Yang-Hwan-O-Tang (BHT), we investigated the neuronal death protection effects to oxidative damages in N2a neuroblastoma cells. Methods : To study the cytotoxic effect of BHT on N2a neuronal cells, the cell viability was determined by MTT assay. To investigate the neuronal death protection of BHT, N2a neuronal cells were induced oxidative damages by H2O2, and assayed the cell viability and DNA fragmentation. We also investigated DPPH free radical scavenging effects of BHT by tube test. Results : In MTT assay, $500{\mu}g/ml$ of BHT was not showed cytotoxic effect on N2a neuronal cells. BHT protected N2a neuronal cells from H2O2-induced cell death in a dose-dependent manner. BHT also protected N2a neuronal cells from H2O2-induced DNA fragmentation. BHT scavenged DPPH free radicals in a dose-dependent manner. Conclusion : These data suggest that BHT may have strong anti-oxidant effects through the free radical scavenging and neuroprotective effects in neuronal cells.

  • PDF

가매보양환오탕(加昧補陽還五湯)의 SH-SY5Y 뇌신경세포에서 산화적 손상에 의한 세포사멸에 대한 보호효과 (Protective effects of added Bo-Yang-Hwan-Oh-Tang on $H_2O_2-induced$ neurotoxicity in SH-SY5Y neuronal cells)

  • 한형수;박용기
    • 대한본초학회지
    • /
    • 제21권4호
    • /
    • pp.85-92
    • /
    • 2006
  • Objectives : To evaluate the neuroprotective effects of added Bo-Yang-Hwan-Oh-Tang (BHT), we investigated the neuronal death protection effects to oxidative damages in SH-SY5Y neuronal cells. Methods : To study the cytotoxic effects of BHT on SH-SY5Y cells, the cell viability was determined by MTT assay. To investigate the neuronal death protection of BHT, SH-SY5Y cells were induced oxidative damages by $H_2O_2$ and then assayed the cell viability and DNA fragmentation. We also investigated DPPH free radical scavenging effect of BHT by tube test. Results : In MTT assay, $1000{\mu}g/ml$ of BHT was not showed the cytotoxic effect on SH-SY5Y cells. BHT protected SHSY5Y cells from $H_2O_2-induced $ neuronal cell death in a dose-dependent manner. BHT also protected SH-SY5Y cells from $H_2O_2-induced$ DNA fragmentation. BHT effectively scavenged DPPH free radicals in a dose-dependent manner. Conclusion : These data suggest that BHT may have strong antioxidant effects through the free radical scavenging and neuroprotective effects in human neuronal cells.

  • PDF

Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide

  • Lee, Ah Young;Choi, Ji Myung;Lee, Myoung Hee;Lee, Jaemin;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • 제12권2호
    • /
    • pp.93-100
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: Oxidative stress plays a key role in neuronal cell damage, which is associated with neurodegenerative disease. The aim of present study was to investigate the neuroprotective effects of perilla oil (PO) and its active component, alpha-linolenic acid (ALA), against hydrogen peroxide $(H_2O_2)$-induced oxidative stress in SH-SY5Y neuronal cells. MATERIALS/METHODS: The SH-SY5Y human neuroblastoma cells exposed to $250{\mu}M$ $H_2O_2$ for 24 h were treated with different concentrations of PO (25, 125, 250 and $500{\mu}g/mL$) and its major fatty acid, ALA (1, 2.5, 5 and $25{\mu}g/mL$). We examined the effects of PO and ALA on $H_2O_2$-induced cell viability, lactate dehydrogenase (LDH) release, and nuclear condensation. Moreover, we determined whether PO and ALA regulated the apoptosis-related protein expressions, such as cleaved-poly ADP ribose polymerase (PARP), cleaved caspase-9 and -3, BCL-2 and BAX. RESULTS: Treatment of $H_2O_2$ resulted in decreased cell viability, increased LDH release, and increase in the nuclei condensation as indicated by Hoechst 33342 staining. However, PO and ALA treatment significantly attenuated the neuronal cell death, indicating that PO and ALA potently blocked the $H_2O_2$-induced neuronal apoptosis. Furthermore, cleaved-PARP, cleaved caspase-9 and -3 activations were significantly decreased in the presence of PO and ALA, and the $H_2O_2$-induced up-regulated BAX/BCL-2 ratio was blocked after treatment with PO and ALA. CONCLUSIONS: PO and its main fatty acid, ALA, exerted the protective activity from neuronal oxidative stress induced by $H_2O_2$. They regulated apoptotic pathway in neuronal cell death by alleviation of BAX/BCL-2 ratio, and down-regulation of cleaved-PARP and cleaved caspase-9 and -3. Although further studies are required to verify the protective mechanisms of PO and ALA from neuronal damage, PO and ALA are the promising agent against oxidative stress-induced apoptotic neuronal cell death.

Protective Role of Corticosterone against Hydrogen Peroxide-Induced Neuronal Cell Death in SH-SY5Y Cells

  • Lee, Chan;Jang, Jung-Hee;Park, Gyu Hwan
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.570-575
    • /
    • 2022
  • Stress breaks body balance, which can cause diverse physiological disorders and worsen preexisting diseases. However, recent studies have reported that controllable stress and overcoming from stress reinforce resilience to resist against more intense stress afterwards. In this study, we investigated the protective effect of corticosterone (CORT), a representative stress hormone against hydrogen peroxide (H2O2)-induced neuronal cell death and its underlying molecular mechanism in SH-SY5Y cells, a human neuroblastoma cell line. The decreased cell viability by H2O2 was effectively restored by the pretreatment with low concentration of CORT (0.03 μM for 72 h) in the cells. H2O2-increased expression of apoptotic markers such as PUMA and Bim was decreased by CORT pretreatment. Furthermore, pretreatment of CORT attenuated H2O2-mediated oxidative damages by upregulation of antioxidant enzymes via activation of nuclear factor erythroid 2-related factor 2 (Nrf2). These findings suggest that low concentration of CORT with eustressed condition enhances intracellular self-defense against H2O2-mediated oxidative cell death, suggesting a role of low concentration of CORT as one of key molecules for resilience and neuronal cell survival.

과산화수소수로 유도된 배양 뇌신경세포손상에 대한 왕머루 잎과 줄기 추출물의 보호효과 (Protective Effect of Vitis amurensis Stems and Leaves Extract on Hydrogen Peroxide-induced Oxidative Neuronal Cell Damage in Cultured Neurons)

  • 김주연;주현수;반주연;송경식;배기환;성연희
    • 한국약용작물학회지
    • /
    • 제17권1호
    • /
    • pp.68-74
    • /
    • 2009
  • Vitis amurensis (VA; Vitaceae) has long been used in oriental herbal medicine. It has been reported that roots and seeds of VA have anti-inflammatory and antioxidant effects. In the present study, the protective effect of ethanol extract from stems and leaves of VA on hydrogen peroxide (${H_2}{O_2}$) (100 ${\mu}M$)-induced neuronal cell damage was examined in primary cultured rat cortical neurons. VA (10-100 ${\mu}g$/ml) concentration-dependently inhibited ${H_2}{O_2}$-induced apoptotic neuronal cell death measured by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. VA inhibited ${H_2}{O_2}$-induced elevation of intracellular $Ca^{2+}$ concentration (${[Ca^{2+}]}_i$) and generation of reactive oxygen species (ROS), which were measured by fluorescent dyes. Pretreatment of VA also prevented glutamate release into medium induced by 100 ${\mu}M$ ${H_2}{O_2}$, which was measured by HPLC. These results suggest that VA showed a neuroprotective effect on ${H_2}{O_2}$-induced neuronal cell death by interfering with ${H_2}{O_2}$-induced elevation of ${[Ca^{2+}]}_i$, glutamate release, and ROS generation. This has a significant meaning of finding a new pharmacological activity of stems and leaves of VA in the CNS.

과산화수소수로 유도된 배양신경세포손상에 대한 참죽나무잎 추출물의 보호효과 (Extract of Cedrela sinensis Leaves Protects Neuronal Cell Damage Induced by Hydrogen Peroxide in Cultured Rat Neurons)

  • 이순복;김주연;조순옥;반주연;주현수;배기환;성연희
    • 한국약용작물학회지
    • /
    • 제15권6호
    • /
    • pp.444-450
    • /
    • 2007
  • Dried leaves from Cedrela sinensis A. Juss. (CS), have been observed to possess various pharmacological activity and contain various antioxidant constituents. The protective effect of ethanol extract of CS on hydrogen peroxide $(H_2O_2)-induced$ neurotoxicity was examined using primary cultured rat cortical neurons in the present study. Exposure of cultured neurons to 100 ${\mu}M\;H_2O_2$ caused a significant neuronal death as assessed by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. The addition of CS, over a concentration range of 10 to $50{\mu}g/m{\ell}$, concentration-dependently prevented the $H_2O_2-induced$ neuronal apoptotic death. CS $(50{\mu}g/m{\ell})$ significantly inhibited $H_2O_2-induced$ elevation of the cytosolic $Ca^{2+}$ concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, Fluo-4 AM. CS (30 and $50{\mu}g/m{\ell})$ inhibited glutamate release and generation of reactive oxygen species (ROS) induced by $100{\mu}M\;H_2O_2$. These results suggest that CS may mitigate the $H_2O_2-induced$ neurotoxiciy by interfering with the increase of $[Ca^{2+}]_c$, and then inhibiting glutamate release and generation of ROS in cultured neurons.

Neuroprotective Effects of Methanol Extracts of Jeju Native Plants on Hydrogen Peroxide-induced Cytotoxicity in SH-SY5Y Human Neuroblastoma Cells

  • Kong, Pil-Jae;Kim, Yu-Mi;Lee, Hee-Jae;Kim, Sung-Soo;Yoo, Eun-Sook;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권5호
    • /
    • pp.171-174
    • /
    • 2007
  • Neuronal death is a common characteristic hallmark of a variety of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. However, there have been no effective drugs to successfully prevent neuronal death in those diseases, whereas oriental medicinal plants have to possess valuable therapeutic potentials to treat neurodegenerative diseases. In the present study, in an attempt to provide neuroprotective agents from natural plants, 80% methanol extracts of a wide range of medicinal plants, which are native to Jeju Island in Korea, were prepared and their protective effects on hydrogen peroxide-induced apoptotic cell death were examined. Among those tested, extracts from Smilax china and Saururus chinesis significantly decreased hydrogen peroxide-induced apoptotic cell death. The extracts attenuated hydrogen peroxide($H_2O_2$)-induced caspase-3 activation in a dose-dependent manner. Further, plant extracts restored $H_2O_2$-induced depletion of intracellular glutathione, a major endogenous antioxidant. The data suggest that Jeju native medicinal plants could potentially be used as therapeutic agents for treating or preventing neurodegenerative diseases in which oxidative stress is implicated.

Antioxidant Activity of Glycyrrhiza uralensis Fisch Extracts on Hydrogen Peroxide-induced DNA Damage in Human Leucocytes and Cell Death in PC12 Cells

  • Lee, Hyun-Jin;Yoon, Mi-Young;Kim, Ju-Young;Kim, Yong-Seong;Park, Hae-Ryong;Park, Eun-Ju
    • Food Science and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.343-348
    • /
    • 2008
  • In this study, antioxidant activity of methanol extract of Glycyrrhiza uralensis Fisch (GUE) against $H_2O_2$-induced DNA damage in human leucocytcs and cell death in PC12 cells was determined. The effect of GUE on $H_2O_2$-induced DNA damage in human leucocytcs was evaluated by the comet assay, where GUE ($1-50\;{\mu}g/mL$) was a dose dependent inhibitor of DNA damage induced by $H_2O_2$. The protective effect of GUE against $H_2O_2$-induced damage on PC12 cells was investigated by MTT reduction assay and lactate dehydrogenase release assay. A marked reduction in cell survival induced by $H_2O_2$ was significantly prevented by $1-50\;{\mu}g/mL$ of GUE. The enzyme activity of caspase-3 was elevated in $H_2O_2$-treated PC12 cells, while preincubation with GUE for 30 min inhibited $H_2O_2$-induced caspase-3 activation in a dose-dependent manner. In conclusion, GUE ameliorates $H_2O_2$-induced DNA damage in human leucocytes and has neuroprotective effect by preventing cell death in PC12 cell, suggesting that GU may be a potential candidate for novel therapeutic agents for neuronal diseases associated with oxidative stress.

시금치 추출물에 의한 뇌세포 사멸 보호 효과 (Spinacia oleracea Extract Protects against Chemical-Induced Neuronal Cell Death)

  • 박자영;허진철;우상욱;신흥묵;권택규;이진만;정신교;이상한
    • 한국식품저장유통학회지
    • /
    • 제14권4호
    • /
    • pp.425-430
    • /
    • 2007
  • Amyloid ${\beta}-peptide$에 의해 유도되는 세포사멸을 보호하는 물질을 검색하기 위하여 250여 식물 재료 및 식품성분으로부터 스크리닝한 결과 가장 효과가 있는 시금치 추출물을 이용하여 뇌신경세포사멸(neuronal cell death)을 어느 정도 보호할 수 있는지를 알아보았다. 시금치 추출물이 항산화 활성과 acetylcholinesterase 활성에 대한 저해효과는 시금치 추출물 처리농도가 높을수록 유의적으로 높게 나타났다. 과산화수소와 amyloid ${\beta}-peptide$에 의해 유도된 SH-SY5Y 세포주의 세포사멸에 대한 시금치추출액의 억제효과를 살펴본 결과, 과산화수소에 의한 세포사멸에 대하여 시금치 추출물은 억제효과를 나타내었으나, amyloid ${\beta}-peptide$의 경우는 세포사멸억제효과를 나타내지 않았다.

Synthetic Wogonin Derivatives Suppress Lipopolysaccharide-Induced Nitric Oxide Production and Hydrogen Peroxide-Induced Cytotoxicity

  • Chun Wanjoo;Lee Hee Jae;Kong Pil-Jae;Lee Gun Hee;Cheong Il-Young;Park Haeil;Kim Sung-Soo
    • Archives of Pharmacal Research
    • /
    • 제28권2호
    • /
    • pp.216-219
    • /
    • 2005
  • Wogonin (5,7-dihydroxy-8-methoxyflavone) has been reported to exhibit a variety of biological properties including anti-inflammatory and neuroprotective functions. In this study, biological activities of diverse synthetic wogonin derivatives have been evaluated in two experimental cell culture models. Inhibitory activities of wogonin derivatives on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglial cells and on hydrogen peroxide ($H_{2}O_2$)-induced neuronal cell death in SH-SY5Y human neuroblastoma were examined. Wogonin derivatives such as WS2 and WS3 showed more potent suppressive activities on LPS-induced NO production and $H_{2}O_2$-induced cytotoxicity than wogonin itself. In addition, thiol substitution played a minor role in enhancing the activities of the derivatives. These findings may contribute to the development of novel anti-inflammatory and neuroprotective agents derived from wogonin.