• Title/Summary/Keyword: $H_2O $

Search Result 18,265, Processing Time 0.045 seconds

Preparation of Chlorine Dioxide Aqueous Solution by Un-divided Electrochemical Cell using RuO2 anode (RuO2를 양전극으로 사용한 무격막 전해셀에서의 이산화염소수 제조)

  • Kwon, Tae Ok;Park, Bo Bae;Roh, Hyun Cheul;Moon, Il Shik
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.296-300
    • /
    • 2009
  • Generation of chlorine dioxide ($ClO_2$) was studied by the un-divided electrochemical cell system using $RuO_2$ anode material. Sodium chlorite ($NaClO_2$) was used as a precursor compound of chlorine dioxide. Effect of various operating parameters such as feed solution flow rate, initial solution pH, $NaClO_2$ and NaCl conc., and applied current density on the produced chlorine dioxide concentration and solution pH were investigated in un-divided electrochemical cell system. Produced chlorine dioxide concentration and solution pH were strongly depends on the initial solution pH and feed solution flow rate. Sodium chloride (NaCl) was not only good electrolyte, it was also used as a raw material of chlorine dioxide with $NaClO_2$. Observed optimum conditions were flow rate of feed solution (90 mL/min), initial pH (2.3), $NaClO_2$ concentration (4.7 mM), NaCl concentration (100 mM), and current density ($5A/dm^2$). Produced chlorine dioxide concentration was around 350 mg/L and solution pH was around 3.

A Non-enzymatic Hydrogen Peroxide Sensor Based on CuO Nanoparticles/polyaniline on Flexible CNT Fiber Electrode (CuO Nanoparticles/polyaniline/CNT fiber 유연 전극 기반의 H2O2 검출용 비효소적 전기화학 센서)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.196-201
    • /
    • 2023
  • In this study, a CNT fiber flexible electrode grafted with CuO nanoparticles (CuO NPs) and polyaniline (PANI) was developed and applied to a nonenzymatic electrochemical sensor for H2O2 detection. CuO NPs/PANI/CNT fiber electrode was fabricated through the synthesis and deposition of PANI and CuO NPs on the CNT fiber surface using an electrochemical method. Surface morphology and elemental composition of the CuO NPs/PANI/CNT fiber electrode were characterized by scanning electron microscope with energy dispersive X-ray spectrometry. And its electrochemical characteristics were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). Compared with a bare CNT fiber as a control group, the CuO NPs/PANI/CNT fiber electrode showed a 4.78-fold increase in effective surface area and a 8.33-fold decrease in electron transfer resistance, which leads to excellent electrochemical properties such as a good electrical conductivity and an efficient electron transfer. These improved characteristics were due to the synergistic effect through the grafting of CNT fiber, PANI and CuO NPs. As a result, this electrode enhanced the H2O2 sensing performance.

The Preparation for Sintered Body of $CeO_2$ Based Complex Oxide in Low Temperature Solid Oxide Fuel Cells Using Colloidal Surface Chemistry (콜로이드 계면화학을 이용한 저온형 고체전해질용 $CeO_2$계 복합 산화물의 소결체 제조)

  • 황용신;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.705-712
    • /
    • 2000
  • In this study, the dispersion stability of CeO2 based complex oxide was studied, and density, porosity, and microstructure of green body were investigated using colloid surface chemistry to manufacture the Gd2O3 doped CeO2 solid electrolyte in an aqueous system. To prepare the stable slurry for slip casting, the dispersion stability was examined as a function of pH using ESA(electrokinetic sonic anplitude) analysis. The dynamic mobility of particles was enhanced with anionic and cationic dispersant were added the amount of 0.5wt% respectively, but pH value in slurries didn't move to below 6.0 because of the influence of dopants. This phenomenon also appeared in the CeO2-Y2O3 and CeO2-Sm2O3 systems, so it could be inferred that rare earth dopants such as Gd2O3, Sm2O3 and Y2O3 not only have the similar motion with changing pH in an aqueous system but also can be dissolved in the range of pH 6.0∼6.5. In CeO2-Gd2O3 system, when the anionic dispersant was added the amount of 0.5wt% and pH value in slurries was fixed at 9.5, the green body density was 4.07g/㎤, and the relative density of sintered body was 95.2%. It could be inferred from XRD analysis that Gd3+ substituted into Ce4+ site because there was no free Gd2O3 peak.

  • PDF

Study on Process Parameters for Effective H2 Production from H2O in High Frequency Inductively Coupled Plasma Reactor (고주파유도결합플라즈마 반응기에서 물로부터 수소생성효율을 높이기 위한 공정변수에 대한 연구)

  • Kwon, Sung-Ku;Jung, Yong-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.2
    • /
    • pp.206-212
    • /
    • 2011
  • The effect of process parameters on $H_2$ production from water vapor excited by HF ICP has been qualitatively examined for the first time. With the increase of ICP power, characteristics of $H_2$ production from $H_2O$ dissociation in plasma was divided into 3 regions according to both reaction mechanism and energy efficiency. At the edge of region (II) in the range of middle ICP power, energy effective hydrogen production from $H_2O$ plasma can be achieved. Furthermore, within the region (II) power condition, heating of substrate up to $500^{\circ}C$ shows additional increase of 70~80% in $H_2$ production compared to $H_2O$ plasma without substrate heating. This study have shown that combination of optimal plasma power (region II) and wall heating (around $500^{\circ}C$) is one of effective ways for $H_2$ production from $H_2O$.

$^{1}H$ Nuclear Magnetic Relaxation in Impure $CuF_{2}.2H_{2}O$ (비자성 불순물을 갖는 $CuF_{2}.2H_{2}O$의 수소 핵자기완화 연구)

  • C. H. Lee;C. E. Lee;S. J. Noh
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.854-857
    • /
    • 1995
  • We have studied the temperature dependence of the $^{1}H$ NMR spin-lattice relaxation for the impure $CuF_{2}.2H_{2}O$ over a temperature range from 77 K to room temperature. We find that the remperature dependence of the $^{1}H$ spin-lattice relaxation is dominated by the eletron spin-flip and the Raman process of eletron spin-lattice relaxation. The electron spin-flip exchange energy was calculated to be $1.8(\pm0.04)$ K.

  • PDF

Evaluation of electrical energy consumption in UV/H2O2 advanced oxidation process for simultaneous removal of NO and SO2

  • Shahrestani, Masoumeh Moheb;Rahimi, Amir
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.389-396
    • /
    • 2019
  • The electrical energy consumption (EEC) in removal of NO by a $UV/H_2O_2$ oxidation process was introduced and related to removal efficiency of this gas. The absorption-reaction of NO was conducted in a bubble column reactor in the presence of $SO_2$. The variation in NO removal efficiency was investigated for various process parameters including NO and $SO_2$ inlet concentrations, initial concentration of $H_2O_2$ solution and gas flow rate. EEC values were obtained in these different conditions. The removal efficiency was increased from about 22% to 54.7% when $H_2O_2$ concentration increased from 0.1 to 1.5 M, while EEC decreased by about 70%. However, further increase in $H_2O_2$ concentration, from 1.5 to 2, had no significant effect on NO absorption and EEC. An increase in NO inlet concentration, from 200 to 500 ppm, decreased its removal efficiency by about 10%. However, EEC increased from $2.9{\times}10^{-2}$ to $3.9{\times}10^{-2}kWh/m^3$. Results also revealed that the presence of $SO_2$ had negative effect on NO removal percentage and EEC values. Some experiments were conducted to investigate the effect of $H_2O_2$ solution pH. The changing of pH of oxidation-absorption medium in the ranges between 3 to 10, had positive and negative effects on removal efficiency depending on pH value.

Synthesis of TAME, ETBE, and MTBE Using Heteropolyacid Catalyst (헤테로폴리산 촉매를 이용한 TAME, ETBE 및 MTBE 합성반응의 연구)

  • Park, Jin-Hwa;Yi, Yong-Woo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.582-588
    • /
    • 1997
  • Synthetic reaction of TAME, ETBE, and MTBE compounds used largely for gasoline octane number enhancer to prevent air pollution was investigated using heteropolyacid catalyst in a fixed bed flow reactor. In the synthetic reaction of TAME, ETBE and MTBE, after hetero atom being replaced with poly atom, the activity of the catalyst, $H_4SiW_{12}O_{40}$ with coordinated bond with W and an hetero atom of Si was the highest among the catalysts tested. Also the activity depended upon the metals replaced which are related to the catalyst acidity. $FeHPW_{12}O_{40}$ and $K_3PM_{o12}O_{40}$ catalysts showed high activity in TAME synthesis, while they were not effective in ETBE and MTBE synthesis. In this study catalysts showing high activity were selected and mixed with equal weight combination of $H_4SiW_{12}O_{40}$ and $Sr_2SiW_{12}O_{40}$ ;$H_4SiW_{12}O_{40}$ and $NaH_2PW_{12}O_{40}$ ; $Fe_{1.5}PW_{12}O_{40}$ and $Mg_2SiW_{12}O_{40}$ ; $Mg_2SiW_{12}O_{40}$ and $Ba_2SiW_{12}O_{40}$. The mixed heteropolyacid catalysts showed higher TBA conversion rate and better selectivity of ETBE and MTBE than the single catalysts.

  • PDF

Morphological Changes of $K_2$$Ti_4$$O_9$ fiber for the Immobilization of Nuclear Waste Metal tons (방사능이온의 고정화를 위한 $K_2$$Ti_4$$O_9$ 섬유의 형상변화)

  • 정경택;문제권;서용철;설용건;오원진
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.71-74
    • /
    • 1995
  • 티타니아계의 흡착제로 최근 주목을 끄는 것은 티탄산칼륨 신소재를 들을 수 있다. 모서리의 chains sharing들과 b축을 따라서 TiO$_{6}$, 즉 8면체의 coner 결합으로 특징 지워지는 티탄산칼륨은 $K_2$O.nTiO$_2$로 표시되는 화합물로 플라스틱의 보강재나 단열재료 용도로 사용되었다. 공업재료로서 중요한 것은 n의 값이 2, 4, 6으로 각각 2티탄산칼륨(K$_2$Ti$_2$O$_{5}$), 4티탄산칼륨(K$_2$Ti$_4$O$_{9}$), 6티탄산칼륨(K$_2$Ti$_{6}$O$_{13}$)으로 불린다. 티탄산칼륨은 기계적 강도가 고강도재료 지르코이나에 해당하고 선팽창계수는 알루미나보다 작아 우수한 내열 및 단열 고강도재료이며 융막재, 이온교환재등으로 쓰인다. 층상구조의 티탄산칼륨을 산처리하여 칼륨을 추출하고 수소이온으로 치환한 결정질 티탄산칼륨 섬유(H$_2$Ti$_4$O$_{9}$.1.2~1.3$H_2O$)는 (H$^{-}$. H$_3$O$^{+}$)Ti$_4$O$_{9}$의 형태를 지니게 된다.

  • PDF

Protective effects of mulberry (Morus alba) sugar extracts on hydrogen peroxide-induced oxidative stress in HepG2 cell (오디 당침출액의 HepG2 세포에서 H2O2로 야기된 산화적 스트레스 보호 효과)

  • Youn, Young;Kim, Ha-Yan;Park, Hoe-Man;Lee, Sun-Ho;Park, Jong-Ryul;Hong, Seong-Gi;Kim, Young-Geun
    • Food Science and Preservation
    • /
    • v.22 no.5
    • /
    • pp.751-757
    • /
    • 2015
  • The objective of this study was to investigate the protective effects of mulberry (Morus alba) sugar extracts (MSE) against $H_2O_2$-induced oxidative stress in HepG2 cells. The MSEs was mixed with matured mulberry and sugar at the same ratio (1:1, w/w) and stored at $18{\pm}3^{\circ}C$ for 40 days. In 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging test, MSE stored for 40 days showed high activity with a ratio above 66%. Therefore, we selected 40 days as the optimum storage period. After cell viability analysis using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we determined that the optimum concentration of MSE was 0.5%. Our results showed that MSE increased the cell viability and antioxidant enzyme activities of superoxide dismutase (SOD) and catalase in $H_2O_2$-treated HepG2 cells. Moreover, the treatment with MSE inhibited malondialdehyde (MDA) levels in $H_2O_2$-treated HepG2 cells. We also observed a reduction in apoptotic bodies in the Hoechst staining. These data show that MSE treatment significantly suppressed caspase-3 activity in HepG2 cells expored to $H_2O_2$-induced oxidative stress, thereby indicationg the protective effects of MSE in $H_2O_2$-induced oxidative stress.