• Title/Summary/Keyword: $H_2O $

Search Result 18,267, Processing Time 0.041 seconds

An important factor for the water gas shift reaction activity of Cu-loaded cubic Ce0.8Zr0.2O2 catalysts

  • Jang, Won-Jun;Roh, Hyun-Seog;Jeong, Dae-Woon
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.339-344
    • /
    • 2018
  • The Cu loading of a cubic $Ce_{0.8}Zr_{0.2}O_2$-supported Cu catalyst was optimized for a single-stage water gas shift (WGS) reaction. The catalyst was prepared by a co-precipitation method, and the WGS reaction was performed at a gas hourly space velocity of $150,494h^{-1}$. The results revealed that an 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst exhibits excellent catalytic performance and 100% $CO_2$ selectivity ($X_{CO}=27%$ at $240^{\circ}C$ for 100 h). The high activity of 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst is attributed to the presence of abundant surface Cu atoms and the low activation energy of the resultant process.

Protective role of paeoniflorin from hydrogen peroxide-mediated oxidative damage in C6 glial cells

  • Lee, Ah Young;Nam, Mi Na;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.137-145
    • /
    • 2020
  • Oxidative stress is one of the pathogenic mechanisms of various neurodegenerative diseases, such as Alzheimer's disease. Neuroglia, the most abundant cells in the brain, is thought to play an important role in the antioxidant defense system and neuronal metabolic support against neurotoxicity and oxidative stress. We investigated the protective effect of paeoniflorin (PF) against oxidative stress in C6 glial cells. Exposure of C6 glial cells to hydrogen peroxide (H2O2, 500 μM) significantly decreased cell viability and increased amounts of lactate dehydrogenase (LDH) release, indicating H2O2-induced cellular damage. However, treatment with PF significantly attenuated H2O2-induced cell death as shown by increased cell survival and decreased LDH release. The H2O2-stimulated reactive oxygen species production was also suppressed, and it may be associated with improvement of superoxide dismutase activity by treatment with PF. In addition, an increase in ratio of Bcl-2/Bax protein expression was observed after treatment with PF. In particular, the down-stream of the apoptotic signaling pathway was inhibited in the presence of PF, mostly by reduction of cleaved-poly ADP ribose polymerase, cleaved caspase-3, and -9 protein expression. Furthermore, H2O2-induced phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 was attenuated by treatment with PF. Taken together, neuroprotective effect of PF against oxidative stress probably result from the regulation of apoptotic pathway in C6 glial cells. In conclusion, our findings suggest that PF may be a potent therapeutic agent for neurodegenerative disorders.

Assessment of Advanced Oxidation Processes using Low and Medium-Pressure Lamps with H2O2 for Reclamation of Biologically Treated Wastewater Effluents (하수 2차 처리수 재이용을 위한 저압 및 중압 고도산화시스템의 성능평가)

  • Ahn, Kyu-Hong;An, Seok;Maeng, Seung-Kyu;Kim, Ki-Pal;Hong, Joon-Seok;Jung, Min-Woo;Kweon, Ji-Hyang;Ahmed, Zubair
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.542-549
    • /
    • 2003
  • In the present study, the feasibility of $UV/H_2O_2$ systems was investigated using low and medium-pressure lamps on biologically treated wastewater effluents for secondary effluent reclamation. Two types of UV lamps were used as the light sources (a 39-W low-pressure mercury lamp and a 350-W medium-pressure mercury lamp). The results from these UV systems showed that the removal of organic compounds could be achieved in the contact time of longer than 30min (i.e., low UV doses). Efficiencies of color removal and disinfection were far better than those of organic matters measured as TOC, DOC and $TCOD_{cr}$. In the low-pressure lamp UV system, it has been found that DOC and color removals were 60.9 and 86.2% with 50mg/L of $H_2O_2$ and contact times of 30 minute, respectively. Whereas, with the medium-pressure lamp UV system, TOC, DOC and color removal were 27.1, 5.6 and 95% with 14.3mg/L of $H_2O_2$ and 14 minute of contact times, respectively. Both systems could be applied for the reclamation of secondary effluent treated with biological treatment processes.

Regulation of BAD Protein by PKA, PKCδ and Phosphatases in Adult Rat Cardiac Myocytes Subjected to Oxidative Stress

  • Cieslak, Danuta;Lazou, Antigone
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.224-231
    • /
    • 2007
  • $H_2O_2$, as an example of oxidative stress, induces cardiac myocyte apoptosis. Bcl-2 family proteins are key regulators of the apoptotic response while their functions can be regulated by post-translational modifications including phosphorylation, dimerization or proteolytic cleavage. In this study, we examined the role of various protein kinases in regulating total BAD protein levels in adult rat cardiac myocytes undergoing apoptosis. Stimulation with 0.1 mM $H_2O_2$, which induces apoptosis, resulted in a marked down-regulation of BAD protein, which is attributed to cleavage by caspases since it can be restored in the presence of a general caspase inhibitor. Inhibition of PKC, p38-MAPK, ERK1/2 and PI-3-K did not influence the reduced BAD protein levels observed after stimulation with $H_2O_2$. On the contrary, inhibition of PKA or specifically $PKC{\delta}$ resulted in up-regulation of BAD. Decreased caspase 3 activity was observed in $H_2O_2$ treated cells after inhibition of PKA or $PKC{\delta}$ whereas inhibition of PKA also resulted in improved cell survival. Furthermore, addition of okadaic acid to inhibit selected phosphatases resulted in enhanced BAD cleavage. These data suggest that, during oxidative stress-induced cardiac myocyte apoptosis, there is a caspase-dependent down-regulation of BAD protein, which seems to be regulated by coordinated action of PKA, $PKC{\delta}$ and phosphatases.

Effect of antioxidants on push-out bond strength of hydrogen peroxide treated glass fiber posts bonded with two types of resin cement

  • Khoroushi, Maryam;Mazaheri, Hamid;Tarighi, Pardis;Samimi, Pouran;Khalighinejad, Navid
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.303-309
    • /
    • 2014
  • Objectives: Hydrogen peroxide ($H_2O_2$) surface treatment of fiber posts has been reported to increase bond strength of fiber posts to resin cements. However, residual oxygen radicals might jeopardize the bonding procedure. This study examined the effect of three antioxidant agents on the bond strength of fiber posts to conventional and self-adhesive resin cements. Materials and Methods: Post spaces were prepared in forty human maxillary second premolars. Posts were divided into five groups of 8 each: G1 (control), no pre-treatment; G2, 10% $H_2O_2$ pre-treatment; G3, G4 and G5. After $H_2O_2$ application, Hesperidin (HES), Sodium Ascorbate (SA) or Rosmarinic acid (RA) was applied on each group respectively. In each group four posts were cemented with Duo-Link conventional resin cement and the others with self-adhesive BisCem cement. Push-out test was performed and data were analyzed using 2-way ANOVA and tukey's post-hoc test (${\alpha}=0.05$). Results: There was a statistically significant interaction between the cement type and post surface treatment on push-out bond strength of fiber posts (p < 0.001, F = 16). Also it was shown that different posts' surface treatments significantly affect the push-out bond strength of fiber posts (p = 0.001). $H_2O_2$ treated posts (G2) and control posts (G1) cemented with Duo-link showed the highest ($15.96{\pm}5.07MPa$) and lowest bond strengths ($6.79{\pm}3.94$) respectively. Conclusions: It was concluded that $H_2O_2$ surface treatment might enhance the bond strength of fiber posts cemented with conventional resin cements. The effect of antioxidants as post's surface treatment agents depends on the characteristics of resin cements used for bonding procedure.

Effect of Al Content on the Gas-Phase Dehydration of Glycerol over Silica-Alumina-Supported Silicotungstic Acid Catalysts

  • Kim, Yong-Tae;You, Su-Jin;Jung, Kwang-Deog;Park, Eun-Duck
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2369-2377
    • /
    • 2012
  • The gas-phase dehydration of glycerol to acrolein was carried out over silicotungstic acid ($H_4SiW_{12}O_{40}{\cdot}xH_2O$, HSiW) catalysts supported on $SiO_2$, ${\eta}-Al_2O_3$, and silica-aluminas with different Al contents. The HSiW catalysts supported on silica-aluminas showed higher glycerol conversions and acrolein yields during the initial 2 h at $315^{\circ}C$ than did $SiO_2$- and ${\eta}-Al_2O_3$-supported HSiW catalysts. Among the tested catalysts, HSiW/$Si_{0.9}Al_{0.1}O_x$ exhibited the highest space-time yield during the initial 2 h. The loaded HSiW species can change the acid types and suppress the formation of carbonaceous species on Al-rich silica-aluminas. The deactivated HSiW supported on silica-aluminas can be fully regenerated after calcination in air at $500^{\circ}C$. As long as the molar ratio between water and glycerol was in the range of 2-11, the acrolein selectivity increased significantly with increasing water content in the feed, while the surface carbon content decreased owing to the suppression of heavy compounds.

The Effect of Mercaptoundecanoic Acid (MUA) Coating on Dispersion Property of Au Nanoparticles in Synthesis of Au/TiO2 Core-shell Nanoparticles (Au/TiO2 core-shell 나노입자의 합성에 있어서 Au 나노입자의 분산특성에 미치는 Mercaptoundecanoic acid (MUA)의 피복 효과)

  • Yu, Yeon-Tae;Kim, Byoung-Gyu
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.754-760
    • /
    • 2006
  • Mercaptoundecanoic acid (MUA) has been used to enhance the dispersity of Au nanoparticles in organic solvent and the affinity between the Au nanoparticles surface and titanium dioxide shell in the synthesis of $Au/TiO_2$ core-shell composite nanoparticles. The dispersity of the MUA-coated Au nanoparticles in ethanol aqueous solution with different concentration of $H_2O$ was investigated by UV-Vis. absorption spectrum and the coating amount of MUA was varied from 0.02 mM to 1.0 mM. The MUA-coated Au nanoparticles were highly dispersed in pure $H_2O$ in the wide range of the coating amount of MUA. On the contrary, the MUAcoated Au nanoparticles showed an enhanced stability in the ethanol/$H_2O$=8/2 mixed solution only when the coating amount of MUA was 0.05 mM, and in the ethanol/$H_2O$=7/3 mixed solution when the coating amount of MUA was in the range from 0.02 mM to 0.17 mM. From this systematic study, it can be inferred that the stability and the dispersibility of Au nanoparticles in organic solvents are highly sensitive towards the amount of MUA coating.

Characterization of Chemically Stabilized $\beta$-cristobalite Synthesized by Solution-Polymerization Route

  • Lee, Sang-Jin
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.116-123
    • /
    • 1997
  • A chemically stabilized $\beta$-cristobalite, which is stabilized by stuffing cations of $Ca^{2+}$ and $Al^{3+}$, was prepared by a solution-polymerization route employing Pechini resin or PVA solution as a polymeric carrier. The polymeric carrier affected the crystallization temperature, morphology of calicined powder, and particle size distribution. In case of the polyvinyl alcohol (PVA) solution process, a fine $\beta$-cristobalite powder with a narrow particle size distribution (average particle size : 0.3$\mu\textrm{m}$) and a BET specific surface area of 72 $\m^2$/g was prepared by an attrition-milling for 1 h after calcination at 110$0^{\circ}C$ for 1h. Wider particle size distribution and higher specific surface area were observed for the $\beta$-cristobalite powder derived from Pechini resin. The cubie(P1-to-tetraganalb) phase transformation in polynystalline $\beta$-cristobalite was induced at approximately 18$0^{\circ}C$. Like other materials showing transformation toughening, a critical size effect controlled the $\beta$-to-$\alpha$ transformation. Densifed cristobalite sample had some cracks in its internal texture after annealing. The cracks, occurred spontaneoulsy on cooling, were observed in the sample with an average grain sizes of 4.0 $\mu\textrm{m}$ or above. In case of the sintered cristobalite having a composition of CaO.$2Al_2O_3$.40SiO$_2$, small amount of amorphous phase and slow grain growth during annealing were observed. Shear stress-induced transformation was also observed in ground specimen. Cristobalite having a composition of CaO.2Al2O3.80SiO2 showed a more sensitive response to shear stress than the CaO.$2Al_2O_3$.40SiO$_2$ type cristobalite. Shear-induced transformation resulted in an increase of volume about 13% in $\alpha$-cristobalite phase on annealing for above 10 h in the case of the former composition.

  • PDF

Long-term Assessment of Chemical Properties from Paddy Soils in Gyeongnam Province

  • Son, Daniel;Sonn, Yeon-Kyu;Kang, Seong-Soo;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.132-137
    • /
    • 2016
  • Field monitoring was performed to evaluate the chemical properties of 260 paddy soils every 4 years from 1999 to 2015 in Gyeongnam province. Soil chemical properties, including soil pH, electrical conductivity, amount of organic matter (OM), available phosphate ($P_2O_5$), exchangeable potassium (K), calcium (Ca), magnesium (Mg) and sodium (Na), and available silicate ($SiO_2$) were analyzed. In 2015, the average values of pH, OM, available $P_2O_5$, exchangeable K, Ca, and Mg, and available $SiO_2$ was 5.8, $30g\;kg^{-1}$, $222mg\;kg^{-1}$, $0.37cmol_c\;kg^{-1}$, $6.5cmol_c\;kg^{-1}$, and $1.4cmol_c\;kg^{-1}$, $252mg\;kg^{-1}$, respectively. The frequency distribution within optimum range of paddy soils was 49.2%, 20.8%, 18.5%, and 5.8% for soil pH, OM, available $P_2O_5$, and available $SiO_2$, respectively. The available $P_2O_5$ concentrations in 2015 was excess level with portion of 58% and did not alter significantly during the experimental period. Although the average of available $SiO_2$ concentration has tended to increase with every year, the insufficient proportion of available $SiO_2$ concentration in 2015 was 48%. These results indicated that a balanced management of soil chemical properties can properly control the amount of fertilizer applied for sustainable agriculture in paddy field.

Preparation of Pt-, Ni- and Cr-Decorated SnO2 Tubular Nanofibers and Their Gas Sensing Properties (Pt, Ni, Cr이 도포된 튜브형 SnO2 나노섬유의 합성과 가스 감응특성)

  • Kim, Bo-Young;Lee, Chul-Soon;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.211-215
    • /
    • 2014
  • The Pt-, Ni- and Cr-decorated tubular $SnO_2$ nanofibers for gas sensors were prepared by the electrospinning of polyvinylpyrrolidone (PVP) nanofibers containing Pt, Ni, and Cr precursors, the sputtering of $SnO_2$ on the electrospun PVP nanofibers, and the removal of sacrificial PVP parts by heat treatment at $600^{\circ}C$ for 2 h. Pt-decorated tubular $SnO_2$ nanofibers showed high response ($R_a/R_g=210.5$, $R_g$: resistance in gas, $R_a$: resistance in air) to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ with negligible cross-responses to other interference gases (5 ppm trimethylamine, $NH_3$, HCHO, p-xylene, toluene and benzene). Cr-decorated tubular $SnO_2$nanofibers showed the selective detection of p-xylene at $400^{\circ}C$. In contrast, no significant selectivity to a specific gas was found in Ni-decorated tubular $SnO_2$ nanofibers. The selective and sensitive detection of gases using Pt-decorated and Cr-decorated tubular $SnO_2$ nanofibers were discussed in relation to the catalytic promotion of gas sensing reaction.