• Title/Summary/Keyword: $H_2O $

Search Result 18,265, Processing Time 0.229 seconds

Synthesis of New N2O2 Tetradentate Ligands and Determination of Stability Constants of Metal Complexes for Removal of Heavy Metals (중금속 이온 분리를 위한 새로운 네 자리 N2O2계 리간드의 합성 및 착 화합물의 안정도상수 결정)

  • Kim, Sun-Deuk;Kim, Jun-Kwang;Lee, Kyung-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.913-920
    • /
    • 2007
  • Hydrochloride acid salts of new $N_2O_2$ tetradentate ligands containing amine and phenol N,N'-bis(2-hydroxybenzyl)-o-phenylenediamine(H-BHP), N,N'-bis(5-bromo-2-hydroxybenzyl)-o-phenylenediamine(Br-BHP), N,N'-bis(5-chloro-2-hydroxybenzyl)-o-phenylene-diamine(Cl-BHP), N,N'-bis(5-methyl-2-hydroxybenzyl)-o-phenylene-diamine (Me-BHP) and N,N'-bis(5-methoxy-2-hydroxybenzyl)-o-phenylenediamine(MeO-BHP) were synthesized. The ligands were characterized by elemental analysis, mass and NMR spectroscopy. The elemental analysis showed that the ligands were isolated as dihydrochloride salt. The potentiometry study revealed that the proton dissociation constants$(logK_n{^H})$ of ligands and stability constants $(logK_{ML})$ of transition and heavy metals complexes. The order of the stability constants of each metal ions for ligands was Br-BHP < Cl-BHP > H-BHP < MeO-BHP < Me-BHP.

Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive (악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발)

  • Chung, Wan-Young;Shim, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

Comparison of $Y_2O_3$ and ZnO Nanoparticles Introduced in YBCO Multilayered Films as Artificial Pinning Centers (YBCO 다층박막에 첨가된 $Y_2O_3$와 ZnO 나노입자의 자속꽂음 중심 특성 비교)

  • Wie, C.H.;Tran, D.H.;Putri, W.B.K.;Kang, B.;Kim, Y.J.;Oh, S.J.;Lee, N.H.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • v.13 no.2
    • /
    • pp.90-96
    • /
    • 2011
  • We investigated the properties of artificial pinning centers of YBCO multilayer films in which $Y_2O_3$ and ZnO nanoparticles are uniformly introduced by using the pulsed laser deposition (PLD) technique. $Y_2O_3$ and ZnO nanoparticles were deposited on top of YBCO buffer layer and the density of nanoparticles was controlled by varying the number of nanoparticle layers. YBCO superconducting layers with total thickness of 250 nm were deposited on top of $Y_2O_3$ and ZnO nanoparticles. Based on analyses of the surface morphology, the transition temperature $T_c$, and the critical current density $J_c$, we discussed the difference between the two kinds of nanoparticles as flux pinning centers.

A study on the electromagnetic properties of Mn-Zn Ferrite doped with $Ho_2O_3$ ($Ho_2O_3$가 첨가된 Mn-Zn ferrite의 전자기적인 특성연구)

  • 김성수;김태원;정승우;백승철;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.265-268
    • /
    • 1999
  • In this study, we investigated the electromagnetic Properties of M $n_{Y}$Z $n_{1-x}$ F $e_{x}$ $O_4$(X=0.67~0.69, Y=0.13~0.19) doped with and without H $o_2$ $O_3$(each of 0.05~ 0.2wt%, step 0.05wt%). The greatest initial permeability of composition is M $n_{0.17}$Z $n_{0.16}$F $e_{0.67}$ $O_4$. As X and Y components, increased. generally resistivity slightly change by the various X and Y components. The initial permeability of M $n_{0.17}$Z $n_{0.16}$F $e_{0.67}$ $O_4$ doped with H $o_2$ $O_3$ showed the about 2.5 times higher than that of M $n_{0.17}$Z $n_{0.16}$F $e_{0.67}$ $O_4$ doped without H $o_2$ $O_3$EX>EX>EX>X>>EX>EX>EX>X>

  • PDF

Enhanced Catalytic Activity of Cu/ZnO/Al2O3 Catalyst by Mg Addition for Water Gas Shift Reaction (Mg 첨가에 따른 수성가스전이반응용 Cu/ZnO/Al2O3 촉매의 활성 연구)

  • Park, Ji Hye;Baek, Jeong Hun;Hwang, Ra Hyun;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.429-434
    • /
    • 2017
  • To investigate the effect of magnesium oxide addition, $Cu/ZnO/MgO/Al_2O_3$ (CZMA) catalysts were prepared using co-precipitation method with fixed molar ratio of Cu/Zn/Mg/Al as 45/45/5/5 mol% for low-temperature water gas shift reaction. Synthesized catalysts were characterized by using BET, $N_2O$ chemisorption, XRD, $H_2-TPR$ and $NH_3-TPD$ analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of $200{\sim}320^{\circ}C$. At the same condition, magnesium oxide added catalyst (CZMA 400) showed that the lowest reduction temperature and stable presence of $Cu^+$, that is active species and abundant weak acid site. Also magnesium oxide added catalysts (CZMA) showed higher catalytic activity at temperature range above $240^{\circ}C$ than the catalyst without magnesium oxide (CZA). Consequently, CZMA 400 catalyst is considered to be excellent catalyst showing CO conversion of 77.59% without deactivation for about 75 hours at $240^{\circ}C$, GHSV $28,000h^{-1}$.

Chromium Poisoning of Neodymium Nickelate (Nd2NiO4) Cathodes for Solid Oxide Fuel Cells

  • Lee, Kyoung Jin;Chung, Jae Hun;Lee, Min Jin;Hwang, Hae Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.160-166
    • /
    • 2019
  • In this study, we investigated the long-term stability of Nd2NiO4 solid oxide fuel cell (SOFC) cathodes to evaluate their chromium poisoning tolerance. Symmetrical cells consisting of Nd2NiO4 electrodes and a yttria-stabilized zirconia electrolyte were fabricated and the cell potential and polarization resistance were measured at 850 ℃ in the presence of gaseous chromium species for 800 h. Up to 500 h of operation, the cell potential remained constant at 500 mA/㎠. However, it increased slightly over the operation duration of 550-800 h. No appreciable increase was observed in the polarization resistance of the Nd2NiO4 cathode during the entire operation of 800 h. Physicochemical examinations revealed that the gaseous chromium species did not form chromium-related contamination not only in the Nd2NiO4 cathode but also at the cathode/electrolyte interface. The results demonstrated that Nd2NiO4 is resistant to chromium poisoning, and hence is a potential alternative to standard perovskite cathodes.

Manufacturing of mesoporous TiO2 film for dye-sensitized solar cell (염료감응형 태양전지용 나노다공질 TiO$_2$ 전극막의 제조)

  • Lee, Dong-Yoon;Koo, Bo-Kun;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.308-311
    • /
    • 2003
  • The mesoporous TiO2 film for the dye-sensitized solar cell was prepared by the spin coating using nano particle $TiO_2$ slurry. In order to obtain the good dispersion of nano size $TiO_2$ particles in slurry, the pH of solvent, the sort and quantity of solvent additive and the quantity of surfactant were adjusted. The experimental range of pH was $2\;{\sim}\;4$. The basic solvent for slurry was dilute $HNO_3$ and the solvent additives were ethylene glycol, propylene glycol and butylene glycol. The degree of particle dispersion was indirectly estimated by the viscosity of slurry and the microstructure after sintering. As results, the lower the pH of solvent was the lower the viscosity of the slurry became. The addition of ethylene glycol and propylene glycol to dilute $HNO_3$ brought about the lowering of viscosity and the enhancement of stability in slurry. The addition of surfactant lowered the viscosity of slurry. It was possible to obtain the homogeneous and uniformly dispersed mesoporous TiO2 film using the dilute HNO3 solvent of pH 2 with the addition of ethylene glycol, propylene glycol and neutral surfactant.

  • PDF

The Effect of the ZnO Nanorod Surface on the Optical Property (ZnO 나노막대의 표면이 광학적 특성에 미치는 영향)

  • Cho, Hyun-Min;Rhee, Seuk-Joo;Cho, Jae-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.93-97
    • /
    • 2010
  • We have studied the effect of the chemical composition of the ZnO nanorod surface on the optical characteristics. The surface was treated with H- and O-plasma at different surface temperatures. The chemical composition of the surface of the ZnO nanorod, being investigated by Auger Electron Spectroscopy(AES), was related to the Photoluminescence(PL) data reported in our previous results. The AES showed the opposite results for the $H_2$ and $O_2$ plasma treatments. The ratio of Zn to O on the surface of the ZnO nanorod increased in the case of $H_2$ plasma, while the composition rate of O increased after $O_2$ plasma treatment. The AES results seems to be correlated to the shift in PL peaks. The increase in the composition rate of Zn on the surface of ZnO nanorod is considered to cause the blue shift of the UV peak. On the contrary, the relative increase of O is considered to cause the red shift in PL peaks.

Synthesis of Tridentate-Schiff Base Co(II) Complexes and Their Electrochemical Properties (세자리 Schiff Base Co(Ⅱ) 착물의 합성과 전기화학적 성질)

  • Chae, Hui Nam;Choe, Yong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.422-431
    • /
    • 1998
  • Tridentate Schiff base ligands such as $SIPH_2,\;SIPCH_2,\;HNIPH_2,\;and\; HNIPCH_2$ were prepared by the reaction of salicylaldehyde and 2-hydroxy-l-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. The structures and properties of ligands and their Co(II) complexes were investigated by elemental analysis, $^1H$NMR, IR, UV-visible spectra, and thermogravimetric analysis. The molar ratio of Schiff base to the metal of complexes was found to be 1:1. Co(II) complexes were contemplated to be hexa-coordinated octahedral configuration containing three water molecules. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as a supporting electrolyte were investigated by cyclic voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Co(II) complexes were irreversible and one electron processes by two steps in diffusion controlled reaction. The reduction potential of the Co(II) complexes was shifted to the positive direction in the order [Co(Ⅱ)$(HNIPC)(H_2O)_3$]>[Co(Ⅱ)$(HNIP)(H_2O)_3$]>[Co(II)$(SIPC)(H_2O)_3$]>[Co(Ⅱ)$(SIP)(H_2O)_3], and their dependence on ligands were not so high.

  • PDF

Impact of Solvent pH on Direct Immobilization of Lysosome-Related Cell Organelle Extracts on TiO2 for Melanin Treatment

  • Bang, Seung Hyuck;Kim, Pil;Oh, Suk-Jung;Kim, Yang-Hoon;Min, Jiho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.718-722
    • /
    • 2015
  • Techniques for immobilizing effective enzymes on nanoparticles for stabilization of the activity of free enzymes have been developing as a pharmaceutical field. In this study, we examined the effect of three different pH conditions of phosphate buffer, as a dissolving solvent for lysosomal enzymes, on the direct immobilization of lysosomal enzymes extracted from Hen's egg white and Saccharomyces cerevisiae. Titanium(IV) oxide (TiO2) nanoparticles, which are extensively used in many research fields, were used in this study. The lysosomal enzymes immobilized on TiO2 under each pH condition were evaluated to maintain the specific activity of lysosomal enzymes, so that we can determine the degree of melanin treatment in lysosomal enzymes immobilized on TiO2. We found that the immobilization efficiency and melanin treatment activity in both lysosomal enzymes extracted from Hen's egg white and S. cerevisiae were the highest in an acidic condition of phosphate buffer (pH 4). However, the immobilization efficiency and melanin treatment activity were inversely proportional to the increase in pH under alkaline conditions. In addition, enhanced immobilization efficiency was shown in TiO2 pretreated with a divalent, positively charged ion, Ca2+, and the melanin treatment activity of immobilized lysosomal enzymes on TiO2 pretreated with Ca2+ was also increased. Therefore, this result suggests that the immobilization efficiency and melanin treatment activity of lysosomal enzymes can be enhanced according to the pH conditions of the dissolving solvent.