• Title/Summary/Keyword: $H_2O$ precipitation

Search Result 502, Processing Time 0.023 seconds

Properties of the System $ZrO_2$+3m/o $Y_2O_3$ Powder Prepared by Co-precipitation Method(I) : Stability of Tetragonal ZrO2 Powder (공침법으로 제조한 $ZrO_2$+3m/o $Y_2O_3$계 분체의 특성(I) : 정방정 Zirconia분체의 안정성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.361-368
    • /
    • 1990
  • The properties of the powder of ZrO2+3m/o Y2O3 system prepared by co-precipitation method at the pH values of 7, 9, 10 and 11 were investigated. ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Zirconium hydroxide near by Zr(OH)4 structure showed more excellent crystallinity and lower formation temperature of tetragonal ZrO2. In the range of this study, cubic ZrO2 was not formed and stability of tetragonal ZrO2 prepared in the conditiion of pH 7 was most excellent. Average particle sizes and specific surface areas of tetragonal ZrO2 powders, prepared as calcining amorphous zirconium hydroxides at $600^{\circ}C$ for 1h, were 0.6-0.8${\mu}{\textrm}{m}$ and 45-70$m^2$/g, respectively.

  • PDF

Comparison of Chemical Characteristics in Wet and Bulk Precipitation Collected in the Iksan Area (익산지역에서 자동 및 수동채취방식에 따른 강수의 화학적 특성 비교)

  • 강공언
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.381-396
    • /
    • 2004
  • In order to understand the precipitation acidity and chemical composition of ion species in Iksan area as well as to know the difference of chemical characteristics in precipitation samples from the viewpoint of precipitation sampling method, precipitation samples were collected by wet-only automatic precipitation sampler and bulk manual precipitation sampler in Iksan, from March 2003 to August 2003. The mean pH of precipitation was 5.0. There was a little significant difference in the mean value of pH between automatic and manual sampler. However, pH values of some precipitation samples were lower in automatic sampler than in manual sampler, especially in case of precipitation samples with small rainfall for March 2003. The mean concentrations of each ions in precipitation were generally a little higher in precipitation samples collected by the manual sampler than in those collected by the automatic sampler because of accumulation of dry deposition on the surface of glass funnel installed at the manual sampler during the sampling period or no rainfall. Dominant species determining the acidity of precipitation, were N $H_4$$^{[-10]}$ and nss-C $a^{2+}$ for cations and nss-S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ for anions. The mean concentration of N $H_4$$^{+}$ and nss-C $a^{2+}$ were 31 $\mu$eq/L and 9 $\mu$eq/L for the automatic sampler and 40 ueq/L and 16 ueq/L for the manual sampler, respectively. In addition, nss-S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ were 27 $\mu$eq/L and 13 $\mu$eq/L for the automatic sampler and 32 $\mu$eq/L and 17 $\mu$eq/L for the manual sampler, respectively. Although the concentrations of the acidifying ions of nss-S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ were about 3 times higher than those for foreign pristine sites, precipitation acidity were estimated to be natural due to the neutralization reaction of the alkaline species of N $H_4$$^{+}$ and nss-C $a^{2+}$ with its higher concentrations. Considering the ratios of nss-S $O_4$$^{2-}$/N $O_4$$^{[-10]}$ nss-S $O_4$$^{2-}$, it was found that ammonium sulphate was dominant in Iksan precipitation. The major non-sea salt ions were maximum concentrations for March, but decreased with increasing of precipitation amount.on amount.

Chemical Characteristics of Precipitation in Pusan I. Temporal and spatial variation of pH and major ions (부산지역 강우의 화학적 특성 I. pH 및 주요이온의 시ㆍ공간적 변화)

  • Jeon, Eun-Ju;Yang, Han-Sub;Ok, Gon;Kim, Young-Sub
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.707-716
    • /
    • 1998
  • The chemical characteristics of precipitation was investigated in Pusan area. Samples were collected from January to November in 1996 at 4 sites, and analyzed pH, major soluble ionic components(C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$, N $a^{+}$, $K^{+}$, N $H_4$$^{+}$, $Mg^{2+}$, $Ca^{2+}$). The order of anion and cation concentrations for the initial precipitation were C $l^{[-10]}$ > S $O_4$$^{2-}$ > N $O_3$$^{[-10]}$ , and $Ca^{2+}$ > N $a^{+}$ > N $H_4$$^{+}$$Mg^{2+}$$K^{+}$, respectively. At coastal sites(P1 and P2) C $l^{[-10]}$ and N $a^{+}$ of maritime sources (seasalt) were high, but at inland sites(P3 and P4) nss-C $a^{2+}$ and nss-S $O_4$$^{2-}$ were high. Calcium ion for the initial precipitation showed high value of enrichement factor(EF) relative to seawater composition. The contribution of seasalt to the composition of precipitation was higher at bite P1 (53.5%) than those of the other sites. Throughout the year the concentrations of major ions for the initial precipitation were low in the heavy rain season. The mean pH for the initial precipitation was 5.4 and showed the negative relationship with the precipitaion amount. The S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ do not play an important role in rain acidification due to the high(97%) neutralizing effect of amonia and calcium species.and calcium species.

  • PDF

Microstructures and Mechanical Properties of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 미세구조 및 기계적 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.991-1003
    • /
    • 1990
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent, various types of metal hydroxides were obtained by single precipitation(series A) and co-precipitation(series B) method at the pH condition between 7 and 11. Fine Al2O3-ZrO2 powders were prepared at optimum calcination condition and the effects of ZrO2 on microstructures and mechanical properties of Al2O3 were investigated. The composition of Al2O3/ZrO2 composites wax fixed as Al2O3-15 v/o ZrO2(+3m/o Y2O3). ZrO2 limited the grain growth of Al2O3 and increased grain size homogeneity of Al2O3 more effectively than MgO.Flexural strength values in Al2O3 and Al2O3/ZrO2 composites were 340-430 MPa and 540-820 MPa, respectively, and the effect of strength improvement showed 20-50% by adding ZrO2 to Al2O3. Fracture toughness of Al2O3/ZrO2 composites was improved by stress-induced phase transformation of tetragonal ZrO2 and toughening effect by microcrack was not observed. Also, ZrO2 particles located at Al2O3 grain junction contributed to toughening, while spherical ZrO2 particles located within Al2O3 grain did not contribute to toughening. Weibull moduli of Al2O3 ceramics and Al2O3/ZrO2 composites of series A and series B were 4.34, 5.17 and 9.06, respectively. Above 0.5 of failure probability, strength values in Al2O3 ceramics and Al2O3/ZrO3 composites of series A and series B were above 400 MPa, 700 MPa and 650 MPa, respectively.

  • PDF

An Analysis of Long-term Trends in Precipitation Acidity of Seoul, Korea (서울지역 강수 산성도의 장기적인 경향분석)

  • 강공언;임재현;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 1997
  • Precipitation samples were collected by the wet- only event sampling method from Seoul during September 1991 to April 1995. These samples were analyzed for the concentrations of the major ionic components (N $O_3$$^{[-10]}$ , N $O_2$$^{[-10]}$ , S $O_4$$^{2-}$, C $l^{[-10]}$ , $F^{[-10]}$ , N $a^{+}$, $K^{+}$, $Ca^{2+}$, $Mg^{2+}$, and N $H_4$$^{+}$), pH, and electric conductivity. During the study period, a total of 182 samples were collected, but only 163 samples were used for the data analysis via quality assurance of precipitation chemistry data. The volume-weighted pH was found to be 4.7. The major acidifying species from our precipitation studies were identified to be non-seasalt sulfate (84$\pm$9 $\mu$eq/L) and nitrate (24$\pm$2 $\mu$eq/L) except for chloride. Because the Cl/Na ratio in the precipitation was close to the ratio in seawater. If all of the non-seasalt sulfate and nitrate were in the form of sulfuric and nitric acids, the mean pH in the precipitation could have been as low as 3.7 lower than the computed value. Consequently, the difference between two pH values indicate that the acidity of precipitation was neutralized by alkaline species. The equivalent concentration ratio of sulfate to nitrate was 3.5, indicating that sulfuric and nitric acids can comprise 78% and 22% of the precipitation acidity, respectively. Analysis of temporal trend in the measured acidity and ionic components were also performed using the linear regression method. The precipitation acidity generally showed a significantly decreasing trend, which was compatible with the pattern of the ratio (N $H_4$$^{+}$+C $a^{2+}$)/ (nss-S $O_4$$^{2-}$+N $O_3$$^{[-10]}$ ).).

  • PDF

Properties of the Powders of the System Al2O3-ZrO2-Y2O3 Prepared by Precipitation Method (침전법으로 제조한 Al2O3-ZrO2-Y2O3계 분말의 특성)

  • 김준태;홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.117-124
    • /
    • 1988
  • The properties of the powders of the system Al2O3-ZrO2-Y2O3 prepared by precipitation method were investigated. Al2(SO4)3$.$18H2O3, ZrOCl2$.$8H2O and YCl3$.$6H2O were used as starting materials. Amorphous aluminum hydrate prepared by precipitation method was completely transformed to alpha Al2O3 as a result of calcining at 1100$^{\circ}C$ for 1 hr and gamma, delta and theta phases appeared as transition phases. In ZrO2-Y2O3 system prepared by co-precipitation method, the crystallization temperature of ZrO2 was increase with Y2O3 contents. The coupled crystallization occured in coprecipitated Al2O3-ZrO2-Y2O3 system, therefore the formation temperature of alpha Al2O3 and ZrO2-Y2O3 system. In this ternary system, the powder morphology showed a particular shape which was composed of large Al2O3 grains having small spherical ZrO2 particles within large Al2O3 grain and relatively large ZrO2 particles along the grian boundaries.

  • PDF

Thermal Shock Behavior of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 열충격 거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics, and the effects of stress-induced phase transformation of ZrO2 on thermal shock behavior of Al2O3-ZrO2 ceramics were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Metal hydroxides were obtained by single precipitation(process A) and co-precipitation(process B) method at the condition of pH=7, and the composition of Al2O3-ZrO2 composites was fixed as Al2O3-15v/o ZrO2(+3m/o Y2O3). Critical temperature difference showing rapid strength degradation by thermal shock showed higher value in Al2O3/ZrO2 composites(process A : 20$0^{\circ}C$, process B : 215$^{\circ}C$) than in Al2O3(175$^{\circ}C$). The improvement of thermal shock property for Al2O3/ZrO2 composites was mainly due to the increase of strength at room temperature by adding ZrO2. The strength degradation was more severe for the sample with higher strength at room temperature. Crack initiation energies by thermal shock showed higher values in Al2O3/ZrO2 composites than in Al2O3 ceramics due to increase of fracture toughness by ZrO2.

  • PDF

Properties of Al2O3-15v/o ZrO2(+3m/o Y2O3) Powder Prepared by Co-Precipitation Method (공침법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 분말의 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.210-220
    • /
    • 1989
  • The properties of the powder of Al2O3-15v/o ZrO2(+3m/o Y2O3) system prepared by co-precipitation method at the pH values of 7, 9, 10 and 11 were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Zirconium hydroxide decreased the specific surface area of aluminum hydroxide of AlOOH type, while increased the specific surface area of aluminum hydroxide of Al(OH)3 type, and formed co-network structure of Al-O-Zr type with the aluminum hydroxides. The rate of transition to $\alpha$-Al2O3 from co-precipitated materials occurred in the order of 7≒10, 9 and 11 of pH values. Al2O3 and ZrO2 interacted to bring about coupled grain growth, and the growth of ZrO2 crystallite size rapidly occurred within $\theta$-Al2O3 matrix. Segregation did not occur in the system Al2O3-15v/o ZrO2(+3m/o Y2O3) and Y2O3 acted as a stabilizer to ZrO2. The lattice strain of tetragonal ZrO2 was increased by the constraint effect of Al2O3 matrix.

  • PDF

H2 gas sensing characteristics of SnO2 nano-powdersprepared by homogeneous precipitation method (균일침전법을 이용한 SnO2 나노분말의 H2 감지 특성)

  • Kim, Yeong-Bok;Lee, Woon-Young;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.361-368
    • /
    • 2008
  • Nanosized $SnO_2$ particles were synthesized by homogeneous precipitation method using tin chloride ($SnCl_4{\cdot}5H_{2}O$) and urea ($CO(NH_2)_2$). The powders were heated at $500^{\circ}C$ and $600^{\circ}C$ for 2h. The crystal structure, microstructure, thermal behavior, specific surface area were analyzed using XRD, FE-SEM, TGA and BET, respectively. The initial resistance and the $H_2$ sensing properties were measured as a function of ${Sb_2}{O_3}$ and Pd doping concentrations. The resistance was decreased with the addition of ${Sb_2}{O_3}$ and the sensitivity for $H_2$ gas was increased with the addition of Pd. Thus, the optimum $H_2$ gas sensing property was obtained in the 0.25.mol% ${Sb_2}{O_3}$ and 1.w% added $SnO_2$ powders.

Sintering Behavior of Al2O3-15v/o ZrO2(+3m/o Y2O3) Ceramics Prepared by Precipitation Method (침전법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 세라믹스의 소결거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.423-437
    • /
    • 1989
  • Al2O3/ZrO2 composites were prepared by precipitation method using Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O as starting materials and NH4OH as a precipitation agent. Al2O3/ZrO2 composites(series A) were prepared by mixing Al2O3 powder obtained by single precipitation method with ZrO2(+3m/o Y2O3) powder obtained by co-predipitation method. Al2O3/ZrO2 composites (series B) were prepared by co-precipitation method using the three starting materials. In all cases, the composition was controlled as Al2O3-15v/o ZrO2(+3m/o Y2O3). The composites of series A showed higher final relative densities than those of series B and tetagonal ZrO2 in all cases was retained to about 95% at room temperature. ZrO2 particles were coalesced more rapidly in grain boundary of Al2O3 than within Al2O3 grain. ZrO2 particles were located at 3-and 4-grain junction of Al2O3 and limited the grain growth of Al2O3. It was observed that MgO contributed to densification of Al2O3 but limited grain growth of Al2O3 by MgO was not remarkable. In all Al2O3/ZrO2 composites, exaggerated grain growth of Al2O3 was not observed and Al2O3/ZrO2 composites were found to have homogeneous microstructures.

  • PDF