• Title/Summary/Keyword: $H_2O$$_2$-induced cell injury

Search Result 104, Processing Time 0.026 seconds

Antioxidant Effect of Juglandis Semen Herb-acupuncture Solution -I. Effect on Oxidant-induced Injury in Kidney Tubular Cells- (호도약침액(胡挑藥鍼液)의 항산화(抗酸化) 효과(效果)에 대(對)한 연구(硏究) -I. 호도약침액(胡挑藥鍼液)이 신장세포(腎臟細胞)서 oxidant에 의한 손상(損傷)에 미치는 영향(影響)-)

  • Kim, Young-Hae;Kim, Kap-Sung
    • The Journal of Korean Medicine
    • /
    • v.17 no.1 s.31
    • /
    • pp.9-20
    • /
    • 1996
  • Oxygen free radicals can generated during metabolic processes in normal cells and by exposure of cells to toxic substances. These radicals have been recogenized to playa critical role in several pathological conditions including carcinogenesis and aging, and they have been implicated in pathogenesis of various diseases such as seizure, Alzheimer's disease, Parkinson's disease, myocardial infarction, respiratory distress syndrome, and rheumatoid arthritis. This study was undertaken to determine if Juglandis semen herb-acupuncture solution (JSHAS) has a protective effect against cell injury caused by oxidants, t-butylhydroperoxide (t-BHP) and $H_{2}O_2$. Cell injury was estimated by measuring lactate dehydrogenase (LDH) release and lipid perexidation was estimated by measurimg malondialdehyde, a product of lipid peroxidation. JSHAS significantly prevented LDH release induced by t-BHP or $H_{2}O_2$ in a dose-dependent manner at concentrations of 0.5-10%. Such protective effect was observed in control tissues untreated with oxidants. JSHAS, at 5% concentration, significantly reduced LDH release even when the concentrations of t-BHP and $H_{2}O_2$ increased to 5 and 200 mM, respectively. JSHAS, at 5% concentration, significantly reduced the lipid peroxidation by t-BHP and $H_{2}O_2$. These results indicate that JSHAS prevents cell injury and lipid peroxidation induced by oxidants in rabbit kidney cells. However, the underlying mechanisms remain to determined.

  • PDF

The Protective Effect of Eupatilin against Hydrogen Peroxide-Induced Injury Involving 5-Lipoxygenase in Feline Esophageal Epithelial Cells

  • Lim, Jae-Chun;Park, Sun-Young;Nam, Yoon-Jin;Nguyen, Thanh Thao;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.313-320
    • /
    • 2012
  • In this study, we focused to identify whether eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone), an extract from Artemisia argyi folium, prevents $H_2O_2$-induced injury of cultured feline esophageal epithelial cells. Cell viability was measured by the conventional MTT reduction assay. Western blot analysis was performed to investigate the expression of 5-lipoxygenase by $H_2O_2$ treatment in the absence and presence of inhibitors. When cells were exposed to 600 ${\mu}M$ $H_2O_2$ for 24 hours, cell viability was decreased to 40%. However, when cells were pretreated with 25~150 ${\mu}M$ eupatilin for 12 hours, viability was significantly restored in a concentration-dependent manner. $H_2O_2$-treated cells were shown to express 5-lipoxygenase, whereas the cells pretreated with eupatilin exhibited reduction in the expression of 5-lipoxygenase. The $H_2O_2$-induced increase of 5-lipoxygenase expression was prevented by SB202190, SP600125, or NAC. We further demonstrated that the level of leukotriene $B_4$ ($LTB_4$) was also reduced by eupatilin, SB202190, SP600125, NAC, or nordihydroguaiaretic acid (a lipoxygenase inhibitor) pretreatment. $H_2O_2$ induced the activation of p38MAPK and JNK, this activation was inhibited by eupatilin. These results indicate that eupatilin may reduce $H_2O_2$-induced cytotoxicity, and 5-lipoxygenase expression and $LTB_4$ production by controlling the p38 MAPK and JNK signaling pathways through antioxidative action in feline esophageal epithelial cells.

Promoting Effect of Hydrogen Peroxide on 1-Methyl-4-phenylpyridinium-induced Mitochondrial Dysfunction and Cell Death in PC12 Cells

  • Lee, Dong-Hee;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The promoting effect of hydrogen peroxide ($H_2O_2$) against the cytotoxicity of 1-methyl-4-phenylpyridinium ($MPP^+$) in differentiated PC12 cells was assessed by measuring the effect on the mitochondrial membrane permeability. Treatment of PC12 cells with $MPP^+$ resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species (ROS) and depletion of GSH. Addition of $H_2O_2$ enhanced the $MPP^+-induced$ nuclear damage and cell death. Catalase, Carboxy-PTIO, Mn-TBAP, N-acetylcysteine, cyclosporin A and trifluoperazine inhibited the cytotoxic effect of $MPP^+$ in the presence of $H_2O_2$. Addition of $H_2O_2$ promoted the change in the mitochondrial membrane permeability, ROS formation and decrease in GSH contents due to $MPP^+$ in PC12 cells. The results show that the $H_2O_2$ treatment promotes the cytotoxicity of $MPP^+$ against PC12 cells. $H_2O_2$ may enhance the $MPP^+$-induced viability loss in PC12 cells by promoting the mitochondrial membrane permeability change, release of cytochrome c and subsequent activation of caspase-3, which is associated with the increased formation of ROS and depletion of GSH. The findings suggest that $H_2O_2$ as a promoting agent for the formation of mitochondrial permeability transition may enhance the neuronal cell injury caused by neurotoxins.

Protective effect of Salviae-radix extraction in $H_2O_2$ induced renal cell injury ($H_2O_2$에 의한 신장(腎臟) 세포 손상에 대한 단삼(丹參) 추출물의 방지 효과)

  • Kim, Sang-Beum;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.38-48
    • /
    • 1998
  • This study was undertaken to determine whether Salviae-radix (SVR) extraction prevents the oxidant-induced cell injury and thereby exerts protective effect against oxidant-induced inhibition of tetraethylammonium uptake (TEA) in renal corticaJ sices. SVR (5%) attenuated $H_2O_2-induced$ inhibition of TEA uptake. $H_2O_2$ increased LDH release and lipid peroxidation in a dose-dependent manner. These changes were prevented by SVR extraction. The protective effect of SVR on LDH release was dose-dependent over the concentration range of 0.1-0.5%, and that on lipid peroxidation over the concentration ranges of 0.05-2%. SVR significantly prevented Hg-induced lipid peroxidation. SVR extraction (0.5%) increased cellular GSH content in normal and $H_2O_2-treated$ tissues. When slices were treated with 100 mM $H_2O_2$, catalase activity was decreased, which was prevented by 0.5% SVR extraction. The activity of glutathione peroxidase but not superoxide dismutase was significantly increased by 0.5% SVR extraction in $H_2O_2-treated$ tissuces. These results suggest that SVR has an antioxidant action and thereby exerts benefical effect against oxidant-induced impairment of membrane transport function. This effect of SVR is attributed to an increase in endogenous antioxidants such as GSH, catalase and glutathione peroxidase.

  • PDF

Beneficial effect of Orostachys japonicus A. berger herbal acupuncture on oxidant-induced cell injury in renal epithelial cell (와송약침액이 Oxidant에 의한 신장세포손상에 미치는 영향)

  • Park, Sang-Won;Kim, Cheol-Hong;Youn, Hyoun-Min;Jang, Kyung-Jeon;Ahn, Chang-Beohm;Song, Choon-Ho
    • Korean Journal of Acupuncture
    • /
    • v.24 no.1
    • /
    • pp.171-187
    • /
    • 2007
  • Objectives : This study was performed to determine if Orostachys japonicus A. Berger herbal acupuncture (OjB) provides the protective effect against the loss of cell viability and DNA damage induced by oxidant in renal proximal tubular cells. Methods : The cell viability was evaluated by a MTT reduction assay and DNA damage was estimated by measuring double stranded DNA breaks in opossum kidney (OK) cells, an established proximal tubular cell line. Lipid peroxidation was determined by measuring malondialdehyde (MDA), a product of lipid peroxidation. Results : H2O2 increased the loss of cell viability in a time-dependent manner, which were prevented by 0.1% OjB. The protective effect of OjB was dose-dependent over concentration range of 0.05-0.5%. H2O2 caused ATP depletion and DNA damage, which were prevented by OjB and the hydrogen peroxide scavenger catalase. The loss of cell viability by H2O2 was not affected by the antioxidant DPPD, but lipid peroxidation by the oxidant was completely inhibited by DPPD. Generation of superoxide and H2O2 in neutrophils activated by phorbol-12,13-dibutyrate was inhibited by OjB in a dose-dependent manner. OjB inhibited generation of H2O2 in OK cells treated with antimycin A and exerted a direct H2O2 scavenging effect. Exposure of OK cells to 1 mM tBHP caused a significant depletion of glutathione which was prevented by OjB. OjB accelerated the recovery in cells cultured for 20 hr in normal medium without oxidant following oxidative stress. Conclusions : These results suggest that OjB exerts the protective effect against oxidant-induced cell injury and its protective effect was resulted from radical scavenging and antioxidant activities.

  • PDF

The protective effects of Moxi-tar on injury induced by H2O2 in C6-glioma (H2O2로 유발된 뇌신경세포 상해에 대한 구진의 보호효과)

  • Ahn, Sung-hun;Koo, Sung-tae;Kim, Sun-young;Kim, Kyung-sik;Sohn, In-cheul
    • Journal of Acupuncture Research
    • /
    • v.21 no.3
    • /
    • pp.29-41
    • /
    • 2004
  • Objective : This study was produced to examine the effects of moxibustion that had been played important role to traditional oriental medical treatment on disease. Recently, it was reported that moxi-tar which is generated in the process of moxibustion as burning combustibles decreased NO and iNOS generation in C6-glioma and RAW 264.7 cells in our lab. Methods : C6-glioma cells were cultured in RPMI 1640 with FBS 10% in CO2 incubator. To study the protective effects of moxi-tar, we observed cell viability, DPPH activity, SOD activity, catalase activity and cell morphology after injury with $H_2O_2$. Results and Conclusions : Moxi-tar increased cell viability about twice as much as that of being injury by $H_2O_2$(moxi-tar $40{\mu}g/m{\ell}$, $H_2O_2$ $500{\mu}M$). And the results of free radical scavenger activity($80{\mu}g/m{\ell}$ : $78.91{\pm}4.4%$), SOD activity and catalase activity($80{\mu}g/m{\ell}$ : 21.6unit/mg protein) were increased by moxi-tar as dose-dependent manner. So we concluded that the effects of moxibustion which is played important role in Oriental medicine, might be free radical scavenger effects induced by moxi-tar. Conclusion : These results indicate that tBHP induces apoptosis through a lipid peroxidation-dependent mechanism and JS exerts the protective effect against the apoptosis by preventing peroxidation of membrane lipids.

  • PDF

Effects of Juglandis Semen extraction on oxidant-induced cell injury in lung tissues (폐(肺) 조직(組織)에서 산화성(酸化性) 세포(細胞) 손상(損傷)에 대(對)한 호도(胡桃) 추출액(抽出液)의 효과(效果))

  • Lee, Woo-Heon;Seo, Woon-Gyo;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.375-384
    • /
    • 1997
  • This study was undertaken to determine Juglandis Semen extraction (JS) has a protective effect against the cell injury caused by oxidants, t-butylhydroperoxide (t-BHP) and $H_{2}O_2$ in rabbit lung slices. Cell injury was estimated by measuring tissue water content and peroxidation of membrane lipids was assessed by measuring malondialdehyde (MDA), an end-product of lipid peroxidation. t-BHP significantly increased water content in lung tissues over concentrations of 2-10 mM, and such effects were prevented by 5% JS. JS exerted the beneficial effect in a dose-dependent manner. $H_{2}O_2$ (100 mM) also increased water content in tissues, which was almost completely prevented by 5% JS. t-BHP induced lipid peroxidation in a dose-dependent fashion in lung tissues over concentrations of 0.5-10 mM. JS significantly reduced t-BHP induced lipid peroxidation and oxidant-independent endogenous lipid peroxidation, and such effects were dose-dependent at concentration of 0.5-10%. JS prevented $H_{2}O_2$ (100 mM)-dependent lipid peroxidation. These results suggest that JS prevents ceil injury induced by oxidants in the lung, and such effects may be attributed to inhibition of lipid peroxidation. The precise mechanisms remains to be explored.

  • PDF

Inhibitory Effects of Ginseng Total Saponins on Hypoxia-induced Dysfunction and Injuries of Cultured Astrocytes

  • Seong, Yeon-Hee;Kim, Hack-Seang
    • Archives of Pharmacal Research
    • /
    • v.20 no.2
    • /
    • pp.103-109
    • /
    • 1997
  • The effects of ginseng total saponins (GTS) on hypoxic damage of primary cultures of astrocytes were studied. Hypoxia was created by placing cultures in an air tight chamber that was flushed with 95% $N_2/5%CO_2$ for 15 min before being sealed. Cultures showed evidence of significant cell injury after 24 h of hypoxia (increased lactate dehydrogenase (LDH) content in the culture medium, cell swelling and decreased glutamate uptake and protein content). Addition of GTS (0.1, 0.3 mg/ml) to the cultures during the exposure to hypoxic conditions produced dose-dependent inhibition of the LDH efflux. GTS (0.1, 0.3 mg/ml) also produced significant inhibition of the increased cell volume of astrocytes measured by $[^3H]$ O-methyl-D-glucose uptake under the hypoxic conditions. Decreased glutamate uptake and protein content was inhibited by GTS. These data suggest that GTS prevents astrocytic cell injury induced by severe hypoxia in vitro.

  • PDF

Inhibition Effect on Neuro2A Cell by Apoptosis of Zizania latifolia Rhizoma (줄풀 줄기의 Neuro2A 신경세포고사에 대한 억제 효과)

  • Cha Yun-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.149-155
    • /
    • 2006
  • To prevent human body injury from oxidative stress, antioxidants are very important and many research about antioxidants are generally being conducted. Hydrogen peroxide($H_2O_2$) that is one of vitality oxygen species has been seen that cause various diseases, DNA damage and gene change. The purpose of this study was to examine the inhibition effect of Zizania latifolia Rhizoma on apoptosis induced by $H_2O_2$ in Neuro2A cell. Neuro2A cells were cultivated in RPMI(GibcoBRL) with 5% FBS and treated with $H_2O_2$ and Zizania latifolia Rhizoma. We measured the cell viability and analyzed DNA fragmentation. Activity of PARP, Cytochrome C, caspase-9, caspase-3, p53, p21, Bax and Bcl-2 in the cell was examined dy using western blot. The results obtained were as Follows: The cell viability in Zizania latifolia Rhizoma treatment (60ug/ml<) decreased significantly compared with that of none treatment. (P<0.001) Zizania latifolia Rhizoma increased cell viability about twice as much as that being injury by $H_2O_2$. (Zizania Latifolia Rhizoma 20ug/ml, $H_2O_2$ 200uM, P<0.001) DNA fragmentation developed by $H_2O_2$, but was not developed in Zizania latifolia Rhizoma treatment. PARP, Cytochrome C, caspase-9 and caspase-3 activated all by $H_2O_2$ but were not activated in Zizania latifolia Rhizoma treatment. P53, P2l and Bax activated dy $H_2O_2$, and Bcl-2 got into inactivation. But the opposite results appeared in Zizania latifolia Rhizoma treatment. In conclusion, these results suggest that Zizania latifolia Rhizoma inhibit the development of DNA fragmentation and apoptosis by $H_2O_2$ and the antioxidant action of Zizania latifolia Rhizoma is effective. More researches about effect of Zizania latifolia Rhizoma are considered to need.